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Abstract

Background: Electroencephalographic (EEG) microstate analysis is a method of

identifying quasi-stable functional brain states (‘‘microstates’’) that are altered in a

number of neuropsychiatric disorders, suggesting their potential use as biomarkers

of neurophysiological health and disease. However, use of EEG microstates as

neurophysiological biomarkers requires assessment of the test-retest reliability of

microstate analysis.

Methods: We analyzed resting-state, eyes-closed, 30-channel EEG from 10

healthy subjects over 3 sessions spaced approximately 48 hours apart. We

identified four microstate classes and calculated the average duration, frequency,

and coverage fraction of these microstates. Using Cronbach’s a and the standard

error of measurement (SEM) as indicators of reliability, we examined: (1) the test-

retest reliability of microstate features using a variety of different approaches; (2)

the consistency between TAAHC and k-means clustering algorithms; and (3)

whether microstate analysis can be reliably conducted with 19 and 8 electrodes.

Results: The approach of identifying a single set of ‘‘global’’ microstate maps

showed the highest reliability (mean Cronbach’s a.0.8, SEM <10% of mean

values) compared to microstates derived by each session or each recording. There

was notably low reliability in features calculated from maps extracted individually for

each recording, suggesting that the analysis is most reliable when maps are held

constant. Features were highly consistent across clustering methods (Cronbach’s

a.0.9). All features had high test-retest reliability with 19 and 8 electrodes.

Conclusions: High test-retest reliability and cross-method consistency of

microstate features suggests their potential as biomarkers for assessment of the

brain’s neurophysiological health.
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Introduction

Neurophysiological impairments may precede the appearance of clinical

symptomology in several neuropsychiatric illnesses [1–3]. Frequent and long-

itudinal monitoring of neurophysiological ‘‘biomarkers’’ could enable early

detection of disease pathogenesis, and enhance understanding of the neurophy-

siological impairments underlying these disorders. Thus, there is great interest in

developing techniques to detect neurophysiological biomarkers associated with

impairments in the brain’s functional health.

Electroencephalography (EEG) is a popular and widely used tool that has been

explored as one such method capable of detecting the electrophysiology of the

brain. EEG detects and records millivolt fluctuations of electric potentials over the

cortex with very high temporal resolution [4]. A number of approaches have been

proposed to extract features of neurophysiologic relevance from the recording.

One such method is to use characteristics of the recorded oscillations to define

‘‘states’’ of the signal that evolve over time. For example, state characteristics such

as chaotic complexity [5] or synchronicity [6] have been extracted from resting-

state EEG. In this method, brain activity is described in relation to state

characteristics, such as the duration or frequency of occurrence of certain states.

Microstate analysis is one such method that defines states of the multichannel

EEG signal by spatial topographies of electric potentials over the electrode array.

This method was first proposed by Lehmann et al. (1987), who showed that the a

frequency band (8–12 Hz) of multichannel resting-state EEG could be parsed into

discrete states in this way [7]. When the multichannel resting-state EEG signal is

considered as a time series of topographies of electric potentials, two remarkable

properties emerge. First, although there are a large number of possible

topographies in multichannel recording, a majority of the signal can be

represented by surprisingly few maps. Interestingly, most studies of resting-state

EEG consistently find the same four archetypal maps that explain more than 70%

of the total topographic variance. Second, there is a well-defined temporal

structure of these maps, in that a single topography remains dominant for about

80–120 ms before abruptly transitioning to another topography. These periods of

quasi-stability of a single topography are ‘‘microstates.’’ Thus, the multichannel

EEG signal can be represented by a single time series of microstates alternating

among themselves at discrete intervals.

Compared to traditional frequency power EEG analysis, spatial analysis of EEG

using microstates has several advantages. Perhaps most importantly, spatial EEG

analysis does not assume the EEG signal is a linear dynamical system that can be

represented through the Fourier series as a linear function of a set of sine waves.

The spatial topography of the EEG signal can be defined at any point in time

independently of the preceding or subsequent topography and therefore has

millisecond resolution, unlike conventional frequency power analysis that

integrates activity over seconds. Indeed, although microstates were initially

described in the alpha frequency band, they can in fact be defined within any

signal bandwidth; the dominant generator frequency in any given bandwidth
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dictates the speed of polarity inversions, but resting-state microstate topographies

are considered independently of polarity (i.e. two topographies with opposite

polarities are considered the same microstate). Microstates are therefore better

suited to detect rapid, dynamic activity in large-scale neurocognitive networks

than traditional frequency analysis of EEG. These large-scale neural networks,

which link spatially distributed cortical areas into functional entities, have been

shown to underlie complex neurocognitive activities [8, 9], including those that

occur at rest, the so-called ‘‘resting-state networks’’ (RSNs). Accordingly, recent

data has indicated that individual microstates may correspond to specific RSNs

identified in functional magnetic resonance imaging (fMRI) studies, as there

appears to be a temporal correlation between the appearance of microstates and

specific RSN activity [10–12]. Spatial EEG signal analysis with microstates may be

a valuable approach to studying these and other large-scale neurocognitive

networks in health and disease.

Consistent with the idea that EEG microstates may reflect the activity of large-

scale neurocognitive networks, preliminary reports have found correlations

between features of the microstate time series and various cognitive activities,

behavioral states, and neuropsychiatric diseases. For example, microstates of

certain topographies have a shorter average lifespan in schizophrenia [13], are

longer in panic disorder [14], shortened in Alzheimer’s disease [15], and appear

more frequently in Tourette’s syndrome [16]. Neurotropic drugs commonly used

to treat neuropsychiatric disease alter microstate features [17, 18]. Microstates

vary with cognitive/behavioral states such as drowsiness [19], sleep stages [20], age

[21], and even personality characteristics [22]. Pre-stimulus spontaneous EEG

microstates also have profound impacts on the electrophysiological [23–25] and

perceptual [26–28] responses to stimuli. These preliminary reports suggest that

features of the microstate time series may be related to the neurophysiological

basis of these disorders, brain states, and cognitive functions, and can potentially

offer insight into the function of the brain in health and disease [29].

The aforementioned cross-sectional studies of microstate features demonstrate

intriguing relationships between microstates and disease. To further explore the

significance of the microstate time series and its potential utility in the detection

of neurophysiological changes underlying disease, longitudinal cohort studies are

required to characterize microstate changes over time in individual patients.

However, the design of these studies is difficult, because limited information exists

about the variance in common microstate features and the test-retest reliability of

these values. Furthermore, although there are several different methodological

approaches to microstate analysis, few studies have assessed the validity and

consistency of these various methods.

In this study, we investigate the test-retest reliability of resting-state EEG

microstate features in healthy subjects across three sessions. We extract four of the

most common features from the time series, namely, the topography that defined

each microstate, the average lifespan of each microstate, the frequency of

appearance of each microstate, and the fraction of total time covered by each

microstate. Our rationale in choosing these features is based on the fact that these
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are the most common features examined in previous studies, and changes in each

of these features has been associated with one or more neuropsychiatric disorders.

Microstate analysis involves two basic steps: first, a set of microstate

topographies is selected, and second, the original data is re-expressed as an

alternating sequence of these microstate topographies from which values of

interest can be calculated. The first step is usually performed by mathematical

clustering of maps in the original data. A single set of microstate topographies can

be identified for all subjects (i.e. all of the original data is clustered together), or a

unique set of topographies can be generated for subsets of subjects (e.g. different

experimental groups may be assigned unique microstates, or each recording may

be assigned an individual set of microstates). We tested the consistency of

microstate analysis using three different approaches. First, we assumed one set of

four global maps and identified a single set of four maps that was applied to all

subjects across all sessions. Second, we generated a set of topographies by session

independently. Third, we generated a set of topographies by recording, i.e.

generated four maps for each individual recording. We also compared two

common clustering algorithms (topographic atomize and agglomerate hierarch-

ical clustering and k-means clustering) and assessed whether microstate analysis

can be performed reliably with as few as 8 electrodes.

Methods

Subjects

We studied 10 healthy subjects (mean age: 30¡10 yr, 5 females). Subjects were

recruited through advertisement in greater Boston area. Exclusion criteria

included a self-reported medical illness and history of drug or alcohol abuse. All

participants gave their written informed consent and the protocol was approved

by the local ethics committee at the Beth Israel Deaconess Medical Centre in

accordance with the declaration of Helsinki.

EEG Recording

Data used in this study was collected as part of a baseline assessment in a larger

research study investigating the effect of non-invasive brain stimulation on

various cortical processes. Subjects were instructed to sit in a comfortable

armchair. Approximately three minutes of resting-state, eyes-closed EEG were

recorded in three sessions separated by at least 48 hours. EEG recording was

obtained through a 32-channel EEG system (BrainProducts, GmbH) with the CPZ

and AFZ electrodes set as reference and ground electrode, respectively. EOG was

recorded through two channels placed underneath each eye. The data was sampled

at 5 kHz with the online filter setting set to DC to 1 kHz. The skin/electrode

impedance was kept below 5 kOhm.
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EEG Preprocessing

Data were imported into MATLAB (The MathWorks. Inc.Natick, MA, USA) for

preprocessing. The open source signal processing functions available through the

EEGLAB toolbox version 11b [30] were used for data import and preprocessing.

The EEG waveforms were epoched into segments of 2 second duration and down

sampled to 2 kHz. A notch filter (band-stop: 55–65 Hz) was used to remove the

60 Hz noise. EEG signals were band passed filtered for the frequency range of 1–

50 Hz to further minimize contamination by high frequency artifact. The infinite

impulse response (IIR) Butterworth filter of second order was employed and both

forward and backward filtering was applied (MATLAB function ‘filtfilt’) to

maintain a zero phase shift. All epochs were manually reviewed and trials and

channels containing eye movements, muscle or any other non-physiological

artifact were discarded. The data were then average re-referenced.

EEG Power Analysis

The EEGLAB function spectopo was used to obtain the power spectrum. The

absolute and relative power was obtained for delta (1–3.5 Hz), theta (4–7 Hz),

alpha (8–12 Hz), and beta (12–30 Hz) frequency bands.

EEG Microstate Analysis

EEG microstate analysis was conducted using the freely-available CARTOOL

software [31]. Preprocessed data were imported into CARTOOL, band passed to

1–30 Hz, and downsampled to 200 Hz before microstate analysis as described

below.

In microstate analysis, the multichannel EEG signal is considered as a series of

instantaneous topographies of electric potentials. We identified points with the

greatest signal-to-noise ratio (SNR) by calculating the global field power (GFP) of

each topography in the time series. The GFP at each point in time is equal to the

root mean square across the average-referenced electrodes – equivalently, the

standard deviation of the signal at all electrodes:

GFP tð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

vi tð Þ{�v tð Þð Þ2

n

vuuut
ð1Þ

where vi(t) is the voltage at electrode i at time t, �v tð Þ is the mean voltage across all

electrodes at time t, and n is the number of electrodes. Maps that occur at local

maxima in the GFP curve – i.e. all points with GFP higher than the preceding and

following point – represent instants of highest field strength and greatest SNR.

Furthermore, because the field topography remains essentially constant between

two local minima of the GFP curve, topographies at GFP maxima are

representative of topographies at surrounding points in time [7, 32]. Thus, data

reduction of the original signal to points at local GFP maxima is a valid method of

enhancing topographic SNR. These maps at local GFP maxima, hereafter referred
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to as the ‘‘original maps,’’ were extracted and submitted to further analysis (

Figure 1).

Microstate analysis involves two basic steps – first, a set of microstate maps is

identified, and second, this set of maps is fit onto the original data to re-express

the multichannel EEG as a sequence of microstates (Figure 1).

Figure 1. Schematic of the method of microstate analysis and extraction of features of interest from the microstate time series. (A) The GFP
(drawn in red) is calculated at each instant of the multichannel EEG recording. Peaks of the GFP curve represent moments of highest SNR. At peaks of the
GFP curve, the potential recorded at each electrode of the multichannel signal is plotted onto a map of the channel array. This collection of maps is entered
into a clustering algorithm (TAAHC or k-means clustering), which results in a small number of representative microstate maps that explain a large proportion
of the global topographic variance. Four topographies are repeatedly found using this method; these maps are labeled A, B, C, or D in the figure. Crosshairs
indicate points of maximum or minimum recorded electric potential. (B) The original maps at peaks of the GFP curve are assigned to a microstate class A, B,
C, or D based on the degree of correlation with the microstate maps and statistical smoothing of the time series. This reassignment results in a
representation of the original multichannel data as an alternating series of microstates A, B, C, and D. A microstate is considered dominant in the time during
which all successive original maps are assigned to the same microstate class, starting and ending at the midpoint in time between the last original map of the
preceding microstate and the first original map of the following microstate, respectively. Each period of dominance is considered a unique appearance of a
microstate. The frequency of a microstate is the number of unique appearances per second. The coverage of each microstate is the fraction of total
recording time that each microstate is dominant.

doi:10.1371/journal.pone.0114163.g001
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1. Derivation of Maps Globally, by Session, and by Recording

We chose a priori to identify four group-level classes in order to remain consistent

with the majority of previous studies that also use four microstate classes. We

compared three different strategies to identify the four maps that would be used to

identify microstates on our original data. In the global maps strategy, we clustered

original maps from each recording into four maps and then entered this set of

46305120 maps into another round of clustering to identify four global maps

that was then fit to all of the original maps. This is similar to the strategy used by

Lehmann et al. (2005) [13]. In the by session strategy, we clustered original maps

from each recording into four maps, and then entered these maps into another

round of clustering separately for each session. This resulted in three separate sets

of four microstate maps (one for each of three sessions). The maps from each

session were fit onto all of the original maps from the respective session. Finally,

in the by recording strategy, we clustered original maps from each recording into

four maps, and used these 30 sets of four maps to fit onto original maps from each

respective recording.

1.1. Topographic Atomize and Agglomerate Hierarchical Clustering (TAAHC)

The original maps were submitted into a modified hierarchical clustering

algorithm known as the topographic atomize and agglomerate hierarchical

clustering (TAAHC) method [33] as implemented by the CARTOOL program

[31]. Briefly, all maps submitted to the procedure are initially considered to be

independent clusters. In each iteration of the algorithm, the ‘‘worst’’ cluster is

identified and split into its constituent maps (‘‘atomized’’). The ‘‘worst’’ cluster in

each iteration is the one with the lowest summated correlation between each

constituent map to the average cluster map. Correlation is analogous to the

Pearson product-moment correlation coefficient between two topographies:

C~

Pn
i~1

uiNvið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

ui
2

s
N

ffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

vi
2

s ð2Þ

where sums are taken over i electrodes. Maps of the ‘‘worst’’ cluster are

redistributed (‘‘agglomerated’’) to any of the remaining clusters to which they are

most strongly correlated. This process is continued until the desired number of

clusters is achieved.

We used TAAHC to cluster the original maps from each subject and session

into four cluster maps for each subject and session. In the by recording strategy, we

fit these four cluster maps onto each recording. In the by session strategy, we

submitted these 120 cluster maps (4 from each of 10 subjects over 3 sessions) to

another round of clustering separately for each session, and fit the maps from each

session onto original maps from the respective session. Finally, in the global maps

strategy, we submitted these 120 cluster maps to the TAAHC algorithm to identify

four group-level cluster maps. These four maps were the ‘‘microstate maps’’ and
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were labeled class A, B, C, and D (Figure 2). Cluster maps identified by recording

and by session were labeled A, B, C, and D depending on their degree of

correlation with maps A, B, C, and D from the global maps strategy. After these

labels were assigned to the sets of 4 cluster maps derived by recording and by

session, these unique sets of 4 cluster maps were fit onto the original data.

1.2. Fitting Microstate Maps onto Original Maps

In the final step, original maps are labeled either A, B, C, or D depending on

which microstate map has the highest correlation to the original map.

1.3. Extraction of Features from the Microstate Time Series

After labeling at the local maxima of the GFP curve, we could express each of the

original signals as an alternating sequence of maps A, B, C, and D. From this

microstate time series, we calculated several features. Our outcomes of interest

were: (1) topographies of the four cluster maps identified in each clustering

strategy, (2) average lifespan of each microstate and all microstates, (3) frequency

of appearance of each microstate and all microstates, and (4) fraction of total

covered time of each microstate. We calculated these features separately for each

subject in each session.

1.3.1. Average Lifespan of Microstates: The lifespan of a microstate was

calculated as the time during which all successive original maps were assigned to

the same microstate class, starting and ending at the midpoint in time between the

Figure 2. Topographies of microstate A, B, C, and D extracted from various clustering methods and
electrode arrays. Crosshairs indicate points of maximum or minimum recorded electric potential. The four
microstate classes A, B, C, and D have been reported in a number of prior studies. TAAHC and k-means
clustering give almost identical microstate maps (first two rows). Because microstates are defined by the
topography of electric potentials over the entire scalp, it is possible to identify microstates fewer electrodes.
The microstate classes A, B, C, and D are identifiable in 19 and 8 electrode data. These lower-resolution
electrode arrays give highly reliable results.

doi:10.1371/journal.pone.0114163.g002
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last original map of the preceding microstate and the first original map of the

following microstate, respectively (Figure 1b) [13].

1.3.2. Frequency of Appearance of Microstates: We calculated the frequency of

appearance of each microstate class by counting the number of unique

appearances of each microstate divided by the total length of recording (

Figure 1b) [13].

1.3.3. Fraction Total Covered Time of Microstates: We calculated the fraction

total covered time (coverage) of each microstate by taking the ratio of the total

time spent in each microstate over the total recording time [13]. Note that the

coverage of all four microstates can be calculated from their respective average

lifespans and frequencies and the total length of recording, i.e. these are not

completely independent measures.

2. K-Means Clustering

To assess the reliability of microstate analysis performed with the k-means

clustering algorithm, we repeated the entire analysis, but used k-means clustering

instead of TAAHC to identify a set of microstate maps. In the k-means clustering

method, clustering is first initialized and then entered into a convergence loop.

During initialization, to find n clusters, n non-identical maps are randomly

selected out of the set of maps entered into the analysis to serve as templates. All

maps are then assigned to a cluster seeded by one of the n templates based on the

degree of correlation to each template. In the convergence loop, all maps in each

of the n clusters are averaged. These n average maps then serve as seeds for new

clusters, and all input maps are again assigned to one of n clusters based on

correlation to cluster seeds. A measure of the quality of current cluster assignment

is computed, in our case the global explained variance (GEV):

GEV~

Pm
i~1

GFP2NC2ð Þ

Pm
i~1

GFP2
ð3Þ

where m is the number of original maps. The convergence loop is repeated until

the quality of the cluster assignment does not improve. The entire initialization

and convergence algorithm is repeated several times to increase the likelihood of

finding an optimal set of n clusters. The procedure can be repeated for many

values of n, so the topographies of any number of clusters can be derived. Because

the initialization step picks n maps to serve as templates randomly, k-means

clustering is non-deterministic. To overcome this drawback, the algorithm is

repeated 300 times for each value of n to minimize run-to-run variance. Maps

identified using k-means clustering were labeled A, B, C, or D depending on

degree of correlation with maps extracting using TAAHC using the global maps

approach.
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3. Microstates from Smaller Electrode Arrays

To investigate whether microstate analysis can be reliably conducted using fewer

electrodes, we selected 19 electrodes from the original 30-channel recording (AF3,

AF4, F7, F3, Fz, F4, F8, T7, C3, C4, T8, Cz, P7, P3, Pz, P4, P8, O1, and O2) and

performed TAAHC on these 19-channel data to identify 4 microstates. We also

selected 8 electrodes from the original recording (F3, F4, C3, Cz, C4, P3, Pz, and

P4) and again performed TAAHC to extract 4 microstates using the global maps

strategy (Figure 2).

4. Determining Test-Retest Reliability and Consistency of

Microstate Characteristics

All statistical analyses were performed using the SAS software.

Cronbach’s a is a well-established measure of the internal consistency and

reliability of a test, and was calculated to determine the reliability of microstate

characteristics across time, and the consistency of these characteristics across

different methods (TAAHC vs k-means clustering and various electrode arrays). It

is calculated as:

a~
K

K{1
1{

PK
i~1

sY(i)
2

sx
2

0
BB@

1
CCA ð4Þ

where K is the number of repeated tests, sx
2 is the variance of the observed data,

and sY(i)
2 is the variance of component i of subject Y. Cronbach’s a is a measure

of reliability relative to between-subject variance. To give a measure of absolute

reliability of these features, we also calculated the standard error of measurement

(SEM) for microstate characteristics, where appropriate.

4.1. Comparison of Microstate Maps Derived from TAAHC and K-Means

Clustering. ing

We tested the four microstates extracted from k-means clustering with those

extracted from TAAHC for significant differences using topographic analysis of

variance (TANOVA). TANOVA is a randomization procedure that uses the GFP

of the electrode-by-electrode subtraction between two maps as the test statistic

(effect size) of the difference between maps [34]. When the maps being compared

are GFP-normalized, the test statistic is equal to the global map dissimilarity

(GMD):

GMDu,v~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

u’i{v’ið Þ2

n

vuuut
ð5Þ

where u’i and v’i are the potentials at electrode i in the GFP-normalized maps

being compared.
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To derive the distribution of the test statistic under the null hypothesis that

there is no difference between maps from k-means clustering and TAAHC, we

randomly shuffled maps from each subject between two groups and calculated the

test statistic between the average group maps, and repeated this procedure 5000

times. The fraction of iterations with a test statistic greater than the one calculated

from the actual data was the p value.

4.2. Test-Retest Reliability of Average Microstate Lifespan, Frequency, and

Coverage Across 3 Sessions

To determine the test-retest reliability of the average lifespan, frequency, and

coverage of each and all microstates across 3 sessions, we calculated Cronbach’s a

and the SEM of these values from 30-electrode data analyzed with TAAHC

clustering, as well as with k-means clustering, as described above.

4.3. Consistency of Average Microstate Lifespan, Frequency, and Coverage

between TAAHC and K-Means Clustering

To determine the level of consistency between microstate features extracted using

TAAHC and k-means clustering, we calculated Cronbach’s a between the average

microstate lifespan, frequency, and coverage measured using microstates extracted

by TAAHC and k-means clustering.

4.4. Consistency of Average Microstate Duration, Frequency, and Coverage

among Channel Arrays with 30, 19, and 8 Electrodes

To determine the level of consistency between microstate features using

topographies extracted using channel arrays with 30, 19, and 8 electrodes with

TAAHC, we calculated Cronbach’s a between the average microstate lifespan,

frequency, and coverage measured with these arrays.

Results

After the data were preprocessed and epochs with artifacts removed, we had a

mean of 127.87 seconds of data (SD 523.87, range 580–204) per recording that

were submitted to microstate analysis from which we extracted the ‘‘original

maps’’ at local maxima in the GFP curve. We chose a priori to cluster the original

maps from each session into four microstates. Four microstate maps had a mean

GEV of 69.93% (SD 53.58, range 565.34–77.99) across all recordings using

TAAHC.

1. Reliability with Maps Derived Globally, by Session, and by

Recording

We calculated test-retest reliability of the average lifespan, frequency, and

coverage with maps derived globally, by session, and by recording using the TAAHC

method. The four global maps appear in Figure 2. The average lifespan, frequency,

and coverage of each microstate calculated using maps derived globally appear in
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Table 1, along with Cronbach’s a and SEM. The mean Cronbach’s a for these

values is 0.811. Most values have Cronbach’s a.0.7 and SEM is less than 10% of

the mean for all values.

Results from maps derived by session and by recording are also presented in

Table 1. For maps derived by session, the mean Cronbach’s a is 0.648 and SEM is

approximately 10% of the mean for all values. For maps derived by recording, the

mean Cronbach’s a is 0.523 and SEM is approximately 10% of the mean.

2. Reliability with Maps Derived Using K-Means Clustering

To determine the reliability of the analysis conducted with maps derived using the

k-means clustering algorithm, we used k-means clustering to identify a set of

global maps and assessed both the reliability of the resulting features over three

sessions. The four global maps derived using k-means appear in Figure 2. These

Table 1. Test-retest reliability of various clustering strategies across 3 sessions separated by at least 48 hours.

Feature/Microstate TAAHC, 30 electrodes, Global Maps
TAAHC, 30 electrodes, Maps per
Session

TAAHC, 30 electrodes, Maps per
Recording

Mean a SEM Mean a SEM Mean a SEM

Average
Lifespan (ms)

A 93.75¡8.14 0.798 5.51
(5.87%)

98.32¡11.48 0.712 8.49
(8.64%)

98.11¡11.69 0.739 8.58
(8.74%)

B 98.96¡9.62 0.885 5.23
(5.28%)

94.90¡9.36 0.875 5.05
(5.32%)

97.74¡9.91 0.723 7.44
(7.61%)

C 102.35¡16.42 0.934 7.11
(6.94%)

101.13¡14.26 0.876 8.02
(7.93%)

101.61¡9.80 0.835 6.16
(6.07%)

D 101.59¡9.59 0.253 9.15
(9.00%)

102.56¡9.57 0.169 9.42
(9.18%)

100.36¡11.23 0.653 9.01
(8.98%)

All 99.95¡9.82 0.816 6.41
(6.41%)

100.01¡9.74 0.806 6.47
(6.47%)

99.83¡9.50 0.834 5.97
(5.98%)

Frequency
(appear/sec)

A 2.29¡0.37 0.844 0.22
(9.77%)

2.56¡0.38 0.584 0.31
(12.23%)

2.47¡0.34 0.653 0.27
(11.10%)

B 2.53¡0.32 0.750 0.23
(9.18%)

2.24¡0.32 0.708 0.23
(10.28%)

2.51¡0.37 0.644 0.30
(11.88%)

C 2.65¡0.36 0.820 0.23
(8.59%)

2.56¡0.34 0.220 0.33
(12.96%)

2.65¡0.37 0.539 0.32
(12.03%)

D 2.63¡0.45 0.931 0.20
(7.50%)

2.74¡0.46 0.928 0.20
(7.48%)

2.48¡0.32 0.358 0.30
(11.96%)

All 10.11¡1.08 0.788 0.74
(7.35%)

10.10¡1.07 0.779 0.75
(7.41%)

10.11¡1.05 0.815 0.68
(6.76%)

Coverage (%) A 21.28¡2.55 0.772 1.76
(8.26%)

25.06¡4.23 20.506 4.14
(16.51%)

24.05¡3.35 0.258 3.21
(13.36%)

B 24.92¡3.05 0.873 1.68
(6.75%)

21.14¡3.08 0.802 1.73
(8.19%)

24.35¡2.96 0.265 2.90
(11.90%)

C 27.23¡6.12 0.976 1.67
(6.12%)

25.86¡4.96 0.705 3.82
(14.77%)

26.84¡3.74 20.687 4.15
(15.47%)

D 26.57¡4.13 0.910 2.04
(7.66%)

27.93¡4.16 0.901 2.14
(7.67%)

24.76¡3.39 20.748 3.74
(15.10%)

Results of analysis of microstate time series for average lifespan, frequency, and coverage fraction of each microstate. Mean parameter values are
presented¡standard deviation. a5Cronbach’s a, SEM 5 standard error of measurement.

doi:10.1371/journal.pone.0114163.t001
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four maps had a mean GEV of 70.92% (SD 53.65, range 565.88–78.70) across all

recordings. TANOVA analysis of maps A, B, C, and D extracted using TAAHC

and k-means reveals no significant difference in the topography of any of the maps

(p.0.01). The average lifespan, frequency, and coverage of microstates calculated

using these maps appear in Table 2. The mean Cronbach’s a for these values is

0.830 and SEM is less than 10% of the mean for all values.

We also assessed the degree of agreement between values calculated using maps

derived from k-means clustering and TAAHC in a single session. These

Cronbach’s a values appear in Table 2. All values are above 0.9.

3. Reliability with 19 and 8 Electrodes

To determine whether microstate analysis can be reliably conducted with fewer

electrodes, we repeated the analysis after selecting 19 and 8 electrodes from the

original 30-electrode array using TAAHC and a global maps strategy. The four

microstate maps derived using 19 and 8 electrodes appear in Figure 2. We could

clearly identify maps belonging to classes A, B, C, and D in both 19 and 8

electrode data. Average microstate duration, frequency, and coverage from 19 and

8 electrode data appear in Table 2. In 19 electrode data, these microstate features

have a mean Cronbach’s a of 0.873 and SEM approximately 10% of mean values.

In 8 electrode data, these features have a mean Cronbach’s a of 0.906 and similar

SEM.

We also determined the degree of consistency between values extracted from 30,

19, and 8 electrode data in a single session. These Cronbach’s a values appear in

Table 3. Most values are highly consistent across these electrode arrays (average

Cronbach’s a50.834). Notably, the consistency of the average lifespan, frequency,

and coverage of microstates C and D tended to be lower than corresponding

values for A and B.

4. Correlations Among Microstate Features

We calculated the correlation between each pair of microstate features in a single

session. As expected, microstate lifespan is inversely correlated with frequency

(average correlation R520.72 across 4 pairs of microstate lifespans and

frequencies) for each individual microstate (e.g. lifespan of microstate A

compared to frequency of microstate A, etc.). When comparing these values

among all 4 microstates, we found positive correlations among all average

lifespans (average correlation R50.79) and frequencies (average correlation

R50.51) (e.g. comparing lifespans of microstates A, B, C, and D) in each

individual recording.

5. Correlation between Microstate Features and Spectral Power

To explore the relationship between microstate features and the power spectra of

EEG recordings, we also calculated the correlation between various microstate

features and the absolute and relative power in the delta, theta, alpha, and beta
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frequency bands averaged across all electrodes. Multiple regression modeling

showed that relative beta power is negatively associated (p50.0001) and relative

alpha power is positively associated (p50.0174) with global average microstate

duration (R250.92). Conversely, relative alpha power is negatively associated

(p50.023) and relative beta power is positively associated (p50.0003) with overall

microstate frequency (R250.89). Power is not significantly associated with

coverage fraction of any microstate class. There were no significant correlations

between any microstate feature and absolute power in any frequency band.

Table 2. Test-retest reliability of k-means clustering analysis and 19- and 8- electrode montages across 3 sessions separated by at least 48 hours.

Feature/Microstate K-means, 30 electrodes, Global Maps TAAHC, 19 electrodes, Global Maps TAAHC, 8 electrodes, Global Maps

Mean a SEM Mean a SEM Mean a SEM

Average
Lifespan
(ms)

A 92.36¡8.49 0.782 5.90
(6.39%)

92.35¡11.17 0.873 6.39
(6.92%)

94.27¡9.60 0.864 5.62
(5.97%)

B 95.03¡9.40 0.901 4.79
(5.05%)

96.26¡12.77 0.917 6.03
(6.27%)

92.58¡10.34 0.918 4.93
(5.32%)

C 100.53¡16.79 0.945 6.71
(6.68%)

105.42¡23.59 0.955 8.61
(8.17%)

105.59¡15.25 0.924 6.98
(6.61%)

D 110.36¡10.30 0.428 9.27
(8.40%)

102.19¡12.29 0.680 9.59
(9.38%)

100.48¡17.48 0.957 6.23
(6.20%)

All 101.13¡9.65 0.795 6.52
(6.45%)

100.20¡13.96 0.898 7.24
(7.23%)

99.15¡12.19 0.940 5.05
(5.10%)

Frequency
(appear/
sec)

A 2.22¡0.37 0.853 0.22
(9.88%)

2.40¡0.54 0.792 0.36
(15.06%)

2.58¡0.54 0.893 0.28
(10.76%)

B 2.23¡0.29 0.786 0.20
(9.09%)

2.43¡0.42 0.879 0.23
(9.58%)

2.44¡0.40 0.934 0.17
(7.09%)

C 2.51¡0.37 0.886 0.20
(8.05%)

2.69¡0.39 0.801 0.26
(9.75%)

2.70¡0.46 0.929 0.20
(7.50%)

D 3.03¡0.49 0.901 0.25
(8.30%)

2.67¡0.60 0.936 0.26
(9.63%)

2.52¡0.36 0.898 0.19
(7.43%)

All 9.98¡1.04 0.759 0.74
(7.44%)

10.19¡1.61 0.840 0.99
(9.75%)

10.24¡1.29 0.920 0.61
(5.93%)

Coverage
(%)

A 20.27¡2.42 0.778 1.67
(8.25%)

21.72¡2.67 0.807 1.67
(7.67%)

23.97¡3.60 0.740 2.64
(10.99%)

B 21.03¡2.66 0.887 1.42
(6.73%)

23.10¡3.88 0.929 1.69
(7.31%)

22.39¡3.18 0.892 1.69
(7.57%)

C 25.47¡6.60 0.980 1.63
(6.40%)

28.29¡7.27 0.969 2.24
(7.92%)

28.33¡5.42 0.923 2.46
(8.70%)

D 33.23¡5.08 0.939 2.13
(6.41%)

26.89¡4.89 0.946 1.94
(7.21%)

25.31¡6.04 0.973 1.72
(6.78%)

Results of analysis of microstate time series for average lifespan, frequency, and coverage fraction of each microstate. Mean parameter values are
presented¡standard deviation. a5 Cronbach’s a, SEM 5 standard error of measurement.

doi:10.1371/journal.pone.0114163.t002

Reliability of EEG Microstates

PLOS ONE | DOI:10.1371/journal.pone.0114163 December 5, 2014 14 / 21



Discussion

In this study, we sought to assess the test-retest reliability of resting-state EEG

microstate analysis in healthy subjects over time. We used a number of variations

of the method to determine the reliability and the degree of consistency among

these approaches. This study has four major findings. First, we found that using a

global set of microstates for all subjects yields average microstate durations,

frequencies, and coverage fractions that have high Cronbach’s a, indicating

excellent test-retest reliability. Second, we found that the use of global maps yields

results that are in general more reliable than maps identified by session or by

recording. Third, we showed that TAAHC and k-means clustering yield highly

consistent results. Finally, we showed that microstate analysis can be reliably

conducted with as few as 8 electrodes.

The maps A, B, C, and D (Figure 2) have been reported by numerous previous

studies of resting-state EEG microstate analysis [5, 13, 21], and the average

microstate lifespans, frequencies, and coverage fractions calculated in this study

are in general agreement with prior studies (Tables 1 and 2). With few exceptions,

most microstate features calculated from a set of global maps have Cronbach’s

a.0.7. Cronbach’s a is equivalent to the 3, k intraclass correlation coefficient and

is a measure of between-subject variance relative to within-subject variance, i.e. it

is a relative measure of test-retest reliability. High (generally,.0.7) Cronbach’s a

value suggests that variance in these values over three spaced sessions is small

compared to the distribution of these values in the entire sample. The SEM values

reported in Tables 1 and 2 are measures of absolute test-retest reliability, and are

approximately 10% of the mean for all values. We conclude that these values have

high relative test-retest reliability.

Table 3. Consistency of microstate features using global maps extracted with different clustering algorithms and different electrode arrays.

Feature/Microstate 30 vs 19 vs 8 electrodes Cronbach’s a TAAHC vs K-means Cronbach’s a

Average
Lifespan (ms)

A 0.953 0.999

B 0.959 0.998

C 0.934 0.997

D 0.833 0.978

All 0.967 0.998

Frequency
(appear/sec)

A 0.943 0.998

B 0.945 0.984

C 0.826 0.966

D 0.794 0.991

All 0.958 0.998

Coverage (%) A 0.933 0.998

B 0.875 0.975

C 0.751 0.987

D 20.230 0.957

doi:10.1371/journal.pone.0114163.t003
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We compared three different strategies for identifying microstate maps to be fit

onto each EEG recording. In the global maps strategy, we derived a universal set of

four maps that was derived using all sessions. We also derived maps by session,

where maps were re-calculated for each session but held constant for all subjects

within each session, and by recording, where maps were identified for each

individual recording. We found that global maps gave the most reliable results.

This suggests that microstate analysis is highly sensitive to the topographies that

are fit onto the data and used to calculate values of interest. Minor differences in

the microstate maps are introduced when maps were recalculated by session or by

recording, which appear to generate within-subject error and lower test-retest

reliability. This also indicates that comparison of microstate features, for example

between two studies, is most valid when the same maps are used.

Our a priori selection of 4 microstates represented our data well, explaining

about 70% of the global topographic variance of the data. We chose to cluster our

data into 4 microstates to remain consistent with the majority of previous studies.

However, methods of deriving a data-driven estimate of the number of

microstates required to ‘‘best’’ explain the data have been proposed [33, 35]. The

most common of these approaches to minimize the cross-validation (CV)

criterion, which is proportional to the ratio between the GEV and the degrees of

freedom of the maps [35]. Importantly, the CV criterion is highly sensitive to the

number of electrodes used, and some have argued against its use when fewer than

64 electrodes make up the channel array [36]. Another measure, the Krzanowski-

Lai criteria, has recently been proposed for microstate analysis [31]. In our data,

the CV criterion was on average minimized between 4 and 5 microstates for all

recordings; thus, our selection of 4 microstates was similar to the data-driven

estimate.

We compared the maps derived using TAAHC and k-means clustering to

determine the extent of agreement between these two clustering algorithms. We

found that TAAHC and k-means clustering (iterated 300 times) both give results

with excellent test-retest reliability across three sessions. The four global maps

derived using both methods are highly similar (Figure 2). Cronbach’s a values for

microstate features calculated using maps from these two methods are all above

0.9, indicating that TAAHC and k-means give highly consistent results.

Because microstate analysis considers the topography of potentials over the

entire cortex in a global representation of brain state, and given the nature of the

microstate maps extracted using 30 electrodes, we hypothesized that fewer

electrodes could successfully identify the four microstate maps A, B, C, and D and

be used to conduct microstate analysis reliably. To test this hypothesis, we

eliminated all but 19 and 8 electrodes of our original data and repeated the

analysis. We could clearly identify maps representing microstate A, B, C, and D in

both 19 and 8 electrode data (Figure 2). The results of these analyses were also

highly reliable (Table 2) and, interestingly, even appeared slightly more reliable

than 30-electrode data. It is possible that elimination of superfluous electrodes

reduced noise in the data and refined the results. We also compared the results

from 30, 19, and 8 electrode data in a single session to assess the degree of
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consistency between these electrode arrays. In general, results from these arrays

are consistent (Table 3). Notably, results of microstates C and D appear less

consistent. This is unsurprising, as the topographies of C and D are similar and

are probably more difficult to resolve with fewer electrodes. Nevertheless, these

data suggest that microstate analysis can be conduced reliably with as few as 8

electrodes. This may be particularly relevant in the development of microstates as

clinically useful biomarkers of disease for longitudinal assessment over time,

because it reduces the invasiveness and inconvenience that is otherwise associated

with clinical EEG studies.

Within individual recordings, we found positive correlations among the average

durations and frequencies of all microstates, suggesting that individuals have a

tendency toward relatively longer or shorter and relatively more or less frequent

microstates in general. This likely reflects natural inter-subject variance, and may

also be a function of age [21]. We were also interested in determining how

microstate features relate to power in EEG frequency bands. We found that the

global average microstate duration decreases and global average frequency

increases with increasing relative power in higher spectral frequencies (beta vs

alpha bands). These associations are likely due to the fact that increased power in

higher frequencies reflects faster cortical oscillations, which gives more frequent

local GFP maxima and enables finer resolution of microstate transitions. This also

suggests that eyes-open EEG data might be expected to yield shorter and more

frequent microstates, as alpha power is reduced in the eyes-open state. Our

findings agree somewhat with the findings of Koenig et al. (2002), in which

shortening overall average microstate lifespans with age was correlated with

increasing relative power in higher frequency bands, although they reported lower

correlation values (R2,0.44) [21]. We did not find evidence of significant

association between the coverage of any microstate and power in any frequency

band, in agreement with the findings of Britz el al (2010) [10].

The statistics we present here are an important contribution to the translation

of microstates to clinical practice as potential biomarkers of neurophysiological

health for longitudinal monitoring in individual patients. Unlike experimental

paradigms, in which results from multiple subjects are aggregated to produce

estimates of variance that are used to determine the significance of microstate

differences between groups (see, for example, [13–16, 37–40]), assessing the

significance of changes in microstates observed across repeated measurements in a

single subject requires estimates of measurement reliability. To this end, for

example, the SEM can be used to estimate a 95% confidence interval for

microstate features outside of which differences in repeated measurements in a

single individual can be reasonably attributed to changes in the true value, rather

than measurement error [41, 42]. This estimate is given by Za=2

ffiffiffi
2
p

NSEM, where

Za/251.96 for a Type I error threshold of 5%. Thus, for the overall microstate

duration using 30 electrodes, TAAHC, and a global maps strategy, the SEM

(6.41 ms from Table 1) suggests that, for repeated measurements in a single

individual, a change in overall microstate duration of 17.77 ms can be considered

significant with 95% confidence. Similarly, reliability can be used to estimate the
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false-positive and false-negative rate if microstate features are used as decision

thresholds [43]. As Cronbach’s a is an ICC, it can be used in power calculations in

the design of large trials [44–46]. We encourage other investigators to use the

values reported herein to optimally design future studies.

Conclusions

In this study, we found that when a global set of microstates is used to conduct

microstate analysis over multiple sessions, resting-state EEG microstate analysis

has high test-retest reliability in healthy subjects as measured by Cronbach’s a and

SEM. We also determined the consistency of the k-means clustering and TAAHC

algorithms in extracting microstate maps. Finally, we found that microstate

analysis can be reliably conducted with as few as 8 electrodes.

The microstate features we analyzed in this study have been shown to vary in

altered cognitive/behavioral states and neuropsychiatric disease, and may be

related to the neurophysiological changes that underlie these disorders. The

clinical use of microstates as potential biomarkers of disease presupposes within-

patient reliability of relevant features, so that changes in the features can

reasonably be attributed to changes in neurophysiology. Our aim in this study was

to assess the degree of this reliability. Our results indicate good reliability of all the

features we examined, and suggest potential value in further exploring microstates

as neurophysiological markers of disease in future studies.
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