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Temporal dynamics of resting 
EEG networks are associated 
with prosociality
Bastian Schiller1,2*, Tobias Kleinert1, Sarah Teige‑Mocigemba3, Karl Christoph Klauer4 & 
Markus Heinrichs1,2*

As prosociality is key to facing many of our societies’ global challenges (such as fighting a global 
pandemic), we need to better understand why some individuals are more prosocial than others. The 
present study takes a neural trait approach, examining whether the temporal dynamics of resting EEG 
networks are associated with inter-individual differences in prosociality. In two experimental sessions, 
we collected 55 healthy males’ resting EEG, their self-reported prosocial concern and values, and their 
incentivized prosocial behavior across different reward domains (money, time) and social contexts 
(collective, individual). By means of EEG microstate analysis we identified the temporal coverage 
of four canonical resting networks (microstates A, B, C, and D) and their mutual communication 
in order to examine their association with an aggregated index of prosociality. Participants with a 
higher coverage of microstate A and more transitions from microstate C to A were more prosocial. 
Our study demonstrates that temporal dynamics of intrinsic brain networks can be linked to complex 
social behavior. On the basis of previous findings on links of microstate A with sensory processing, 
our findings suggest that participants with a tendency to engage in bottom-up processing during rest 
behave more prosocially than others.

Prosocial behavior, such as cooperating, sharing resources, and providing aid, is widespread, universal1,2 and, 
as shown recently, of critical importance to solve global issues like fighting a pandemic3. However, substantial 
inter-individual differences exist in the extent to which these behaviors are shown4–11. While some individuals 
voluntarily risk their own lives by, for instance, helping others to handle Covid-19, others put their own interests 
first and break rules established to protect other (high risk) individuals. Recent research has shown that prosocial 
behavior in different incentivized economic game paradigms is correlated, as is this behavior and self-reported 
prosociality, pointing to the existence of a domain-general “prosocial phenotype”12–14. To illuminate heterogene-
ity in this prosocial phenotype, it could be useful to rely on a so-called neural trait approach which has already 
identified objective and stable neural sources (e.g., brain volume or resting state activity) of individual differences 
in various other phenotypes15–17. As a key advantage, neural traits are free of any biases (e.g., social desirability, 
self-deception) inherent in self-report measures18. Relying on this approach, we here use a spatio-temporal 
analysis of multichannel electroencephalography19,20 recorded at rest to investigate whether temporal dynamics 
of intrinsic large-scale brain networks are linked with prosociality.

Our study adds to previous studies using the neural trait approach to predict prosociality21,22 in four regards. 
First, we analyze changes in scalp electrical potential topographies, thereby considering changes in global network 
activity. Second, using these networks’ intrinsically generated activity, we attempt to identify associations of brain 
activity and prosocial behavior independent from specific social contexts. Third, we uniquely illuminate the 
association of the temporal dynamics of neural resting networks with prosocial behavior on a millisecond scale. 
And fourth, we investigate a domain-general prosocial phenotype14,23 across distinct measurement approaches 
(self-report and incentivized behavior), social contexts (individual and collective), and reward domains (money 
and time).
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More specifically, we used a spatio-temporal analysis approach to cluster the resting EEG signal into a cir-
cumscribed number of scalp electrical potential topographies that remain stable for certain time periods (ca. 
50–120 ms) before dynamically changing into a different topography that remains stable again24–28. One has 
referred to these periods with stable topographies as “microstates” and one has interpreted transitions between 
microstates to represent sequential coordinated activity of different, distributed neural networks. Remarkably, 
almost 80% of the variance in the resting EEG data can be explained by just four archetypal microstates A–D, 
i.e., resting networks which may result from evolutionarily determined, brain-intrinsic biases toward particu-
lar patterns of co-activation particularly suited to representing environmentally relevant information29. These 
networks’ temporal dynamics have been proven to be highly reliable, specific, and reproducible across multiple 
independent studies30,31, ideally qualifying them as neural trait markers.

Several studies have attempted to identify the neural sources and functions related to these four resting EEG 
networks20,32,33. Microstates A and B have been associated with bottom-up sensory processing (microstate A has 
been linked to activity in temporal areas involved in phonological processing and microstate B has been linked 
to activity in extrastriate areas involved in visuo-spatial processing32–35). Microstate D, on the other hand, has 
been associated with top-down cognitive processing (microstate D has been linked to activity in fronto-parietal 
areas involved in attention and control32,34,36). The function of microstate C has remained more controversial, as 
it was originally linked to activity in fronto-insular areas considered to be involved in salience processing34, but 
recent research associates it with activity in the default mode network and stimulus-independent processing20,37.

Being the first study of its kind, our general research question was to examine whether there is any associa-
tion among the four canonical resting EEG networks’ temporal dynamics with prosociality. For that purpose, 
we generated a domain-general index of prosociality that we aggregated across self-reported prosocial concern 
(using the Interpersonal Reactivity Index38 scale Empathic Concern), self-reported prosocial values (using the 
Portrait Value Questionnaire39 scale Benevolence), collective prosocial behavior (using the Public Goods Game40 
in a monetary reward domain), and individual prosocial behavior (using the Social Value Orientation task41 in 
a non-monetary reward domain). On the basis of resting EEG networks’ significance for non-social behavior, 
personality, and psychiatric conditions20,31, we expected that revealing an individual’s tendency to engage these 
networks at rest would help explain inter-individual differences in prosociality and illuminate the potential psy-
chological processes that underlie these differences. For example, our findings might contribute to the debate on 
the role of bottom-up and top-down processing in driving inter-individual differences in prosocial behavior42–45. 
Due to our study’s exploratory nature, we applied Bonferroni-correction for multiple tests to our findings.

Results
Prosociality.  We did observe considerable variability in prosociality (M = 0.00, s.d. = 0.69, range: − 1.84–
1.23), aggregated across self-reported prosocial concern (non-standardized values in the 7-item 5-point Lik-
ert scale Empathic Concern scale of the IRI: M = 17.63, s.d. = 4.62, range: 2–24), self-reported prosocial values 
(non-standardized values in the 6-point Likert scale Benevolence of the PVQ: M = 4.90, s.d. = 0.67, range: 3.50–
6.00), collective prosocial behavior (non-standardized contributions in the Public Goods Game: M = 220.00, 
s.d. = 142.27, range: 0–400), and individual prosocial behavior (non-standardized angles in the Social Value Ori-
entation task: M = 26.20, s.d. = 16.71, range: − 7.82–53.41; for histograms displaying the distributions of all vari-
ables’ non-standardized values, see Fig. 1).

Prosociality and resting EEG networks.  In accordance with previous findings, the applied cluster anal-
ysis identified the four canonical microstates A–D (see Fig. 2) which explained 78% of the variance in our whole 
sample and at least 69% of the variance in every single individual (M = 77.73, s.d. = 3.50, range: 69.07–84.19). 
To assess reliability, we correlated microstate parameters that were identified separately for the first and second 
halves of artifact-free data available in each individual (for details, see “Methods”). We detected correlations 
ranging from 0.772–0.922 (all P < 0.001) with regard to microstate coverage, duration, and occurrence, and cor-
relations ranging from 0.281 to 0.720 (all P < 0.038) concerning microstate transitions (for details, see Table S2). 
These findings show the potential of microstate parameters to serve as neural trait markers that might be associ-
ated with inter-individual differences in prosociality.

We first tested for associations of microstate coverage and prosociality. Correlative analyses revealed that 
participants with a higher coverage of microstate A were more prosocial [Rs(53) = 0.346, P = 0.010, significant 
after Bonferroni-correction for multiple testing; prosocial concern: Rs(53) = 0.192, P = 0.159; prosocial values: 
Rs(53) = 0.165, P = 0.230; individual prosocial behavior: Rs(53) = 0.284, P = 0.035; collective prosocial behavior: 
Rs(53) = 0.213, P = 0.118, see Fig. 3]. Meng’s z-tests indicated that the correlation of prosociality with the cover-
age of microstate A was significantly higher than the correlation of prosociality with the coverage of microstates 
B [Rs(53)Prosociality × Coverage B = − 0.190, Z(53) = 2.514, P = 0.006)], C [R(53)Prosociality × Coverage C = 0.012, Z(53) = 1.914, 
P = 0.028] and D [R(53)Prosociality × Coverage D = − 0.265, Z(53) = 2.526, P = 0.006]. Subsequent analyses revealed that 
the association of prosociality with the coverage of microstate A was mainly due to an association of prosocial-
ity with microstate A’s duration [Rs(53) = 0.370, P = 0.005], and not its occurrence [R(53) = 0.097, P > 0.20]. We 
also found a marginally significant negative correlation between the coverage of microstate D and prosociality 
[R(53) = -0.265, p = 0.051]. There were no other significant associations of microstate coverages and prosociality 
(see Table S3). Furthermore, we found the significant association of microstate A’s coverage and prosociality in 
both the first and the second half of data (first half: R(53) = 0.301, P = 0.025; second half: R(53) = 0.375, P = 0.005), 
demonstrating the robustness of this finding. In sum, participants with a higher temporal stability (= mean 
duration) and, in turn, coverage of microstate A tended to show more prosocial concern, values, and behavior.

Next we tested for associations of microstate transitions and prosociality. Correlative analyses revealed 
that participants with more transitions from microstate C to A were more prosocial [R(53) = 0.414, P = 0.002, 
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significant after Bonferroni-correction for multiple testing; prosocial concern: Rs(53) = 0.261, P = 0.054; proso-
cial values: Rs(53) = 0.366, P = 0.006; collective prosocial behavior: Rs(53) = 0.081, P > 0.20; individual prosocial 
behavior: Rs(53) = 0.261, P = 0.054, see Fig. 4]. There were no other significant associations of microstate tran-
sitions and prosociality after Bonferroni-correction for multiple testing (see Table S3). Meng’s z-tests indi-
cated that the correlation of prosociality with transitions from microstate C to A was significantly higher than 

Figure 1.   Variability in prosociality. Left: Histogram indicating significant variability in the aggregated 
prosociality index which we generated relying on research demonstrating the existence of a domain-general 
“prosocial phenotype”12–14. Right: Histograms indicating significant variability in prosocial concern (middle 
top; values of the Interpersonal Reactivity Index scale Empathic Concern), prosocial values (right top; values of 
the Portrait Value Questionnaire scale Benevolence), collective prosocial behavior (middle bottom; monetary 
contributions in the Public Goods Game), and individual prosocial behavior (right bottom; Social Value 
Orientation angles distributing time units); note that all these variables were entered into our calculation of the 
domain-general prosociality index.

Figure 2.   Topographies of grand-mean microstates with descriptive statistics. Grand mean maps for N = 55 
participants, their percentage coverage, mean duration in millisecond, and mean occurrences per second. Note 
that the four empirically identified microstates closely resemble the canonical resting-state microstates20.
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prosociality’s correlations with all other transition types (all P < 0.049) except for transitions from microstates D 
to A [Rs(53)Prosociality × Transition D to A = 0.154, Z(53) = 1.52, P = 0.064] and A to C [R(53)Prosociality × Transition A to C = 0.332, 
Z(53) = 0.632, P = 0.264]. Furthermore, we found the significant association of transitions from microstate C to 
A and prosociality in both the first and the second half of data [first half: Rs(53) = 0.374, P = 0.005; second half: 
R(53) = 0.316, P = 0.019], demonstrating the robustness of this finding. In sum, participants with more transitions 
from microstate C to A tended to show more prosocial concern, values, and behavior.

Finally, to enable better comparability of our findings with the literature, we repeated all of our analysis 
sorting individual microstate maps according to normative grand mean templates29. These analyses yielded 
highly similar results confirming the robustness of our study’s findings [correlation of coverage of microstate 
A and prosociality: R(53) = 0.345, P = 0.010; correlation of transitions from microstate C to A and prosociality: 
R(53) = 0.268, P = 0.048; for details see Table S3].

Discussion
Can someone’s task-free neurophysiological processing reveal information on someone’s prosociality? By analyz-
ing the spatio-temporal dynamics of resting EEG recordings the present study demonstrates that an individual’s 
propensity of how to engage the four canonical EEG resting networks (i.e., microstates A, B, C, and D) is associ-
ated with an index of an individual’s domain-general prosociality. This index was aggregated across self-reported 
prosocial concern and values, as well as incentivized behavior collected in different reward domains (time and 
money) and social contexts (individual and collective). More specifically, we found that participants with a higher 
coverage of microstate A and more transitions from microstate C to A were more prosocial.

How can we interpret the association of microstate A’s coverage with prosociality based on previous research 
examining the functional significance of the four canonical EEG resting networks (for reviews, see20,31)? In 
healthy participants, microstate A’s coverage has been associated with activity in the phonological fMRI resting 
network34 and been shown to increase during hypnosis—a state characterized by a sense of automaticity and 
effortlessness46,47. One could thus deduce from these findings that a higher coverage of microstate A indicates an 
individual’s tendency to engage in sensory, bottom-up processing during rest which in turn predisposes towards 
prosociality. Notably, microstate B, associated with visual sensory processing34,37 but also shown to decrease dur-
ing hypnosis47, was not associated with prosociality, indicating a complex relationship between different kinds 
of sensory, bottom-up processing and prosociality. Furthermore, we found indications of a negative association 
of attention-related microstate D34,37,48 with prosociality (this correlation was no longer significant after correc-
tion for multiple comparisons across microstate classes), tentatively suggesting an antagonistic relationship of 
specific kinds of top-down compared to bottom-up processing with prosociality which may be corroborated in 
future research.

Figure 3.   Associations of the coverage of microstate A with prosociality. Left: Scatterplot of the association of 
the coverage of microstate A (in % of total time) with the prosociality index including 95% confidence intervals. 
Right: Scatterplots of the associations of the coverage of microstate A with prosocial concern (middle top; values 
of the Interpersonal Reactivity Index scale Empathic Concern), prosocial values (right top; values of the Portrait 
Value Questionnaire scale Benevolence), collective prosocial behavior (middle bottom; monetary contributions 
in the Public Goods Game), and individual prosocial behavior (right bottom; Social Value Orientation angles 
distributing time-units) including 95% confidence intervals.
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Our study also demonstrates that inter-individual differences in prosociality are associated with differences 
in the communication between EEG resting networks. More specifically, the networks underlying microstates A 
and C seem to act as a crucial gateway, as demonstrated by positive associations of transitions from microstate 
C to A with prosociality. So far, no consensus has been reached about the function of microstate C, but recent 
research has proposed that this state is associated with stimulus-independent processing20,37,49. One could thus 
speculate that individuals with more transitions from microstate C to A tend to shift more often from stimulus-
independent processing to stimulus-dependent sensory-related, bottom-up processing which in turn seems to 
predispose them to prosociality. We encourage future research to zoom in on the transitions between resting 
EEG microstates in order to better understand the functions underlying the communication between neural 
resting networks on a millisecond scale20,31.

The discussed findings and interpretations might also contribute to our understanding of the interactive role 
of bottom-up and top-down processing in driving inter-individual differences in prosocial behavior42–44. It has 
been reported that individuals who self-report a bottom-up processing style tend to maintain more successful 
interpersonal relationships, exhibit greater prosocial concerns, and tend to behave more prosocially50–52. Other 
research both examining and manipulating the response times underlying social behavior showed that individuals 
who took or possessed less time for their decisions behaved more prosocially53,54 (but see also55,56). These find-
ings have been interpreted to indicate that people are “intuitively cooperative” and behave prosocially if they do 
not take or have the time to engage in time-consuming top-down processing during the (decision) task (see also 
recent research for specification under which conditions these findings hold57–59). Here, we complement these 
findings by demonstrating correlative evidence that a tendency to engage in bottom-up rather than top-down, 
task-free neural processing predisposes towards prosociality.

While prosociality is clearly determined by situational factors as well60,61, recent research has demonstrated 
that there is a cross-situational and temporally stable individual tendency for prosociality14,62. The present study 
proposes potential neural traits affecting this tendency by uniquely revealing the temporal dynamics of rest-
ing EEG networks with millisecond resolution, thereby extending findings from research on the role of resting 
fMRI networks in prosociality63,64. It shows that an individual’s propensity of how to engage the four resting EEG 
networks is associated with an individual’s level of prosociality. Future studies should test the generalizability 
of these findings across situations, as the aforementioned associations seemed to differ in their significance and 
strength across distinct measurement approaches, social contexts, and reward domains. Furthermore, given that 
males and females differ in their prosociality in several dimensions65–67, it is unclear how our findings would 
apply to females. We hope that our study inspires future research aiming to better understand the nature of the 
relationship between resting EEG networks’ temporal dynamics and prosociality in participants of both genders, 

Figure 4.   Associations of transitions from microstate C to A with prosociality. Left: Scatterplot of the 
association of transitions from microstate C to A (visualized is the percentage of observed transitions relative 
to expected transitions; i.e., a value of 10 indicates that transitions from microstate C to A occurred 10% 
more frequently than expected from each microstate’s occurrence) with the prosociality index including 95% 
confidence intervals. Right: Scatterplots of the associations of transitions from microstate C to A with prosocial 
concern (middle top; values of the Interpersonal Reactivity Index scale Empathic Concern), prosocial values 
(right top; values of the Portrait Value Questionnaire scale Benevolence), collective prosocial behavior (middle 
bottom; monetary contributions in the Public Goods Game), and individual prosocial behavior (right bottom; 
Social Value Orientation angles distributing time-units) including 95% confidence intervals.
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for example by experimentally modifying the environment of resting EEG recordings68, analyzing the relationship 
between task-independent and task-dependent neural activity16,69,70, analyzing brain-to-brain synchronization 
affecting prosociality71, and linking the four resting EEG networks to psychological constructs known to affect 
prosociality (e.g. empathy, perspective-taking72–74).

Methods
Participants.  Based on an estimated average medium effect size of associations between resting EEG net-
works’ temporal dynamics and trait variables in similar research75, 55 participants (α = 0.05, β = 0.85) are needed 
to detect a significant effect (Correlation, bivariate normal model; G-Power76). Our sample included 55 healthy, 
right-handed participants (M = 24.22 y, s.d. = 4.20, range: 19–40 y). Due to potential confounds associated with 
hormonal variation in the menstrual cycle and the complexities associated with controlling for this variation in 
the experimental design62,63, only male participants were enrolled in this initial project. All participants were 
right-handed, and free of current or previous history of physical and psychiatric disorders, and alcohol or drug 
abuse. The Ethics Committee of the University of Freiburg approved this study, which was conducted according 
to the principles expressed in the Declaration of Helsinki.

Procedure.  There were two experimental sessions. At the first session, participants received detailed infor-
mation on the experiment and gave informed consent. Then, participants were comfortably seated in a darkened, 
electrically shielded cabin for the recording of 64-channel resting EEG. Our measurement protocol consisted of 
20-s eyes open periods followed by 40-s eyes closed periods, repeated five times. This resting state paradigm has 
been routinely used in resting EEG research16,17,27,77 in order to minimize fluctuations in participants’ vigilance 
state. Participants can become drowsy already after 3 min of recording resting state brain activity, if there is no 
alternation of eyes-open/eyes-closed periods78. We gave the instructions about eye opening/closing via inter-
com. To exclude the possibility that instruction delivery confounds the resting state during the eyes-closed peri-
ods, instructions were delivered at the beginning and end of the eyes-open periods. After the resting EEG meas-
urement participants completed three reaction time paradigms that are unrelated to the purpose of the current 
study and will be analyzed elsewhere. Finally, participants completed self-report measures related to prosociality. 
The first session lasted approximately 1.5 h. The second session was conducted in groups of six participants in 
a group-laboratory specifically designed for computerized interaction experiments several weeks after the first 
appointment. After receiving detailed instructions and answering comprehension questions, participants played 
two social-decision making paradigms. Finally, participants had to complete reaction time tasks which they had 
to repeat several times dependent on the time units earned in one of the social decision-making paradigms; we 
did not analyze this task further. The second session lasted approximately 1.5 h. After the experiment, subjects 
received an average compensation of 45.13 € (s.d. = 1.18, range: 43.50–48.10), depending on participants’ and 
their interaction partners’ decisions.

EEG recording.  The EEG was recorded with a 64-channel recording system (Brainamp with actiCAP, Brain 
Products Gmbh, Munich) according to the extended 10–20 system montage79. Scalp impedance was kept below 
10 kΩ. FCz served as the reference electrode, AFz as the ground electrode. Horizontal and vertical electrooculo-
graphic signals were recorded with two additional electrodes at the left and right outer canthi and one electrode 
at the left infraorbital. The EEG was online band-pass filtered between 0.1 and 100 Hz, and the data digitized 
with a sampling rate of 500 Hz.

EEG pre‑processing.  We used the Brain Vision Analyzer program (Version 2.1.0.327; Brain Products 
GmbH, Munich) to pre-process EEG data. Only the 200 s eyes-closed periods were used for the analysis, because 
the influence of external visual stimulus processing and confounding eye blinks is minimized80,81. Next, we 
band-pass filtered EEG data (high-pass 2 Hz, low-pass 20 Hz29 and re-derived them to average reference. Ocular 
correction was conducted via a semi-automatic independent component analysis based correction process. EEG 
signals with excessive noise were replaced by using a linear interpolation of neighboring electrodes. After an 
automatic artifact rejection (maximum amplitude: ± 100 μV), data were visually examined to eliminate residual 
artifacts. Finally, and in line with previous research, artifact-free data (M = 166.91 s, s.d. = 30.41 s, range: 56–200 
s) were segmented into 2-s epochs for further analyses16,17,82.

EEG microstate analysis.  Microstate analysis was conducted using the microstate-plugin83 for the Matlab 
Toolbox EEGLAB84. First, in line with the standard procedure19,85, the maps at the momentary peaks of the 
Global Field Power (i.e., maximum voltage values at all electrodes that represent time points of optimal signal-
to-noise ratio29were extracted and submitted to a modified spatial cluster analysis using the atomize-agglom-
erate hierarchical clustering method (AAHC86,87). This clustering approach identified the four most dominant 
cluster maps in every single participant. The individual cluster maps were submitted to a second cluster analysis 
yielding grand mean maps which were then sorted according to the standard labeling of the four canonical 
EEG resting networks20,31 (see Fig. 2). Next, the maps of each individual were sorted according to these grand 
mean maps on the basis of spatial correlations. To enable comparability of our findings with the literature, we 
repeated this sorting procedure using the grand mean template maps as identified in normative EEG data col-
lected from multiple sites (n = 496; 19 electrodes29. Finally, the GFP peaks of individual EEG data were assigned 
to the individually identified cluster maps to which they best fitted. This assignment was linearly interpolated 
to the time periods between the GFP peaks, yielding a continuous temporal stream of microstates occurring in 
each individual. From this last step, we extracted several microstate parameters. We focused on the temporal 
coverage a given microstate is dominant, representing the total presence of the underlying network. We also 
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investigated underlying associations with average microstate duration (i.e., an index of the temporal stability 
of the underlying network; unit: milliseconds) and microstate occurrence (i.e., an index of the relative usage of 
the underlying network; unit: occurrences/second), both of which together determine a microstate’s temporal 
coverage. To reveal communication between the underlying networks, we finally studied microstate transitions, 
which were operationalized as the percentage of observed transitions from one microstate class to another rela-
tive to expected transitions [transitions = (observed transitions per second – expected transitions per second) / 
expected transitions per second * 100; i.e., a value of 10 indicates that transitions from one microstate class to 
another occurred 10% more frequently than expected from each microstate’s occurrence]. Finally, to assess the 
reliability of microstate parameters, we performed the fitting procedure (i.e., assigning the GFP peaks to the four 
individually identified maps, which were sorted according to the grand mean maps or grand mean templates 
maps) separately for the first and second halves of each participant’s artifact-free EEG data.

Self‑report measures of prosocial concern and prosocial values.  We measured self-reported 
prosocial concern using the Interpersonal Reactivity Index (IRI38, German version by88). The IRI is a question-
naire including 28 items for the assessment of empathic abilities on four different scales with seven items each 
(Empathic Concern, Perspective Taking, Fantasy, and Emotional Distress). Per item, participants have to report 
how well these items describe them as a person from “not at all” to “very strong” (5-point Likert scale). For the 
purpose of this study, we focused on the scale Empathic Concern which assesses feelings of prosocial concern 
for others (Cronbach’s Alpha = 0.68–0.7389). Additionally, we measured self-reported prosocial values using the 
Portrait Value Questionnaire (PVQ90, German version by39). We used the 21-item version of the PVQ measur-
ing personal values on 10 different scales with 2–3 items each (Benevolence, Power, Achievement, Hedonism, 
Stimulation, Self-direction, Universalism, Tradition, Conformity, and Security). The PVQ measures values indi-
rectly by obtaining judgments of the similarity of another person, who is portrayed in terms of her or his goals, 
aspirations, and wishes, to oneself, on a scale ranging from “not like me at all” to “very much like me” (6-point 
Likert scale). For the purpose of this study, we focused on the scale Benevolence, which assesses prosocial val-
ues, i.e., attaching importance to the preservation and enhancement of the welfare of other people (Cronbach’s 
Alpha = 0.6790).

Decision‑making paradigms to assess prosocial behavior.  We measured prosocial behavior involv-
ing actual consequences to interaction partners across two distinct reward domains (money and time) and social 
contexts (individual and collective). To control for strategic considerations (e.g., reputation, reciprocity), we kept 
the decisions anonymous and non-reciprocal. Because we were interested in explaining inter-individual differ-
ences, we used a fixed order of the two decision-making paradigms17,91. Participants first played the Public Goods 
Game, a well-established behavioral measure of collective prosocial behavior92. Each participant was randomly 
assigned to a group of three people and endowed with 400 points (exchange rate: 100 points = 1 Euro) which 
he could either keep for himself or contribute to the public good (possible contributions ranged from 0 to 400 
in steps of 50 points). The sum of all contributions to the public good was multiplied by the factor 1.5 and then 
equally divided among all players of the assigned group regardless of individual contributions. This game induces 
a conflict between self and group interests, because participants can earn the maximal personal profit by con-
tributing nothing and profiting from other participants’ contributions, whereas the group can earn the maximal 
profit by all participants contributing all their resources. The amount contributed to the public good is entered 
into the calculation of domain-general Prosociality. Second, participants played the Social Value Orientation 
task41, which assesses individual prosocial behavior and has previously been linked to prosocial behavior such 
as helping or pro-environmental intentions93,94. In our study, two participants who were explicitly not aligned to 
the same group in the Public Goods Game were randomly paired for the SVO. Both participants had to decide 
how to distribute time units between themselves and another participant among a series of six preset choices 
which affected the total duration of the experiment for each participant (see Fig. S1 for an exemplary item of the 
SVO; 100 points = 2 min; for another experiment using time units, see95). After the decisions it was randomly 
determined which of the two paired participant’s decisions were implemented into actual consequences. This 
task induces a conflict between self and another person’s interests, because participants can earn the maximal 
personal profit in terms of time units by selecting a distribution which does not yield the maximal profit for 
both paired participants and vice versa. From all these decisions an SVO angle is calculated which represents a 
continuous measure of how much weight someone attaches to the welfare of others in relation to their own. The 
SVO angle is also entered into the calculation of domain-general Prosociality (see Statistical Analysis,see Fig. S1 
for details on the calculation of the SVO angle).

Statistical analysis.  To obtain a domain-general measure of prosociality we averaged z-standardized scores 
of self-reported prosocial concern and prosocial values, and of PGG contributions and SVO angles (Cronbach’s 
Alpha = 0.62). To test for any association between specific microstates’ coverages and prosociality and for the 
reliabilities of microstates parameters (first vs. second half), Pearson-coefficients were calculated for normally 
distributed variables, and Spearman-coefficients otherwise (2-sided tests, alpha level = 0.05, see Table S1). We 
only report findings significant after Bonferroni-correction for multiple testing across microstates (four tests; 
P < 0.0125) and the transitions between them (twelve tests; P < 0.00417). In case of significant associations of a 
microstate/microstate transition and prosociality, we tested for this finding’s specificity by comparing it with the 
associations of the other microstates/microstate transitions and prosociality using Meng’s z-tests for dependent 
correlations96.
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Data availability
All data generated during and/or analyzed during the current study are available from the corresponding authors 
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