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EmBody/EmFace as a new open 
tool to assess emotion recognition 
from body and face expressions
Lea L. Lott1,2,3, Franny B. Spengler1,2,3*, Tobias Stächele1, Bastian Schiller1,2 & 
Markus Heinrichs1,2*

Nonverbal expressions contribute substantially to social interaction by providing information on 
another person’s intentions and feelings. While emotion recognition from dynamic facial expressions 
has been widely studied, dynamic body expressions and the interplay of emotion recognition from 
facial and body expressions have attracted less attention, as suitable diagnostic tools are scarce. 
Here, we provide validation data on a new open source paradigm enabling the assessment of 
emotion recognition from both 3D-animated emotional body expressions (Task 1: EmBody) and 
emotionally corresponding dynamic faces (Task 2: EmFace). Both tasks use visually standardized 
items depicting three emotional states (angry, happy, neutral), and can be used alone or together. 
We here demonstrate successful psychometric matching of the EmBody/EmFace items in a sample 
of 217 healthy subjects with excellent retest reliability and validity (correlations with the Reading-
the-Mind-in-the-Eyes-Test and Autism-Spectrum Quotient, no correlations with intelligence, and 
given factorial validity). Taken together, the EmBody/EmFace is a novel, effective (< 5 min per task), 
highly standardized and reliably precise tool to sensitively assess and compare emotion recognition 
from body and face stimuli. The EmBody/EmFace has a wide range of potential applications in 
affective, cognitive and social neuroscience, and in clinical research studying face- and body-specific 
emotion recognition in patient populations suffering from social interaction deficits such as autism, 
schizophrenia, or social anxiety.

To make sense of our social environment and ensure successful social interaction, we constantly try to read 
others’ nonverbal signals and infer their mental and emotional states. For that purpose, we rely heavily on 
information from emotional face and body  expressions1,2. So far, the vast majority of studies on the processing 
of emotional cues have focused on static or dynamic facial expressions, while studies on emotion recognition 
from body expressions are comparably  scarce3–5. This imbalance in scientific attention does not seem justified, 
as emotional body expressions have several advantages over facial ones. First, body expressions are crucial when 
facial information is not completely accessible (e.g., from a distance, in the dark, or when masks hide parts of the 
face). Notably, when combined with face cues, body expressions are known to intensify or even supersede facial 
expressions of  emotion3,6. Second, the correct decoding of (threatening) body expressions as a danger (as opposed 
to a safety signal) enables an immediate flight response eliminating the need to approach the other person in 
face-to-face proximity, thus making it of vital evolutionary importance for our species’  survival1,7. Compared to 
faces, which can send ambivalent signals (e.g., a fearful face might communicate both ‘look out for danger’ as 
well as ‘I need compassion/help’), emotional body expressions depict a more direct cue to act and automatically 
prepare the observer for appropriate action. This is reflected in additional activation in brain areas associated 
with preparing motor responses when processing emotional body  expressions7,8. Third, from a methodological 
perspective, the recognition of facial expressions is prone to confounding effects from the sender’s facial features 
(such as  ethnicity4 or  attractiveness9,10) and the recipient’s characteristics (such as cultural  background4, anxiety-
related eye-gaze  avoidance11, etc.). This renders body expressions a more suitable and culturally impartial tool 
to assess the fundamental mechanisms underlying emotion  processing12,13.
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Research into emotion recognition from the face and body crucially depends on experimental tasks that 
measure each performance in a standardized way. Indeed, there are many examples of tasks for recognizing 
emotions from faces, such as the Karolinska Directed Emotional Faces  battery14, the Radboud Faces Database15, 
the NimStim Set16, the Amsterdam Dynamic Facial Expression Set (ADFES)17 (all using pictures/videos of the 
whole face) or the Reading the Mind in the Eyes test (RMET, using pictures of the eye region only)18. In contrast 
to the many well-established tools available for studying emotion recognition from faces, there has long been a 
relative paucity of tools to assess emotion recognition from body expressions. Over the last two decades, how-
ever, the interest in studying emotional body expressions has steadily increased, leading to the development 
of different emotional body datasets (examples using static stimuli: e.g.,19,20, examples using dynamic stimuli: 
e.g.,21–24). Thoroughly validated tools that attempted to include both face and body expressions alongside each 
other remain scarce, however (e.g., the PONS test25 or the Bochum Emotional Stimulus Set26).

In particular, we still lack tools enabling us to compare deficits in emotion recognition from face vs. body 
expressions, e.g., in clinical samples. Such tools would require tasks with similar psychometric properties (i.e., 
tasks matched in score variance and difficulty) in order to prevent obscuring or overestimating differences in 
emotion recognition abilities between groups based on artificially generated differences in task  performance27,28.

To close this research gap, we introduce the EmBody/EmFace as a novel and highly standardized sensitive 
tool by which to assess emotion recognition from emotional face and body expressions. Our tool comprises 
two experimental tasks that can be used either alone or together. The first subtask (EmBody) assesses emotion 
recognition from body expressions using an innovative stimulus set of computer-animated dynamic point-
light displays. The second subtask (EmFace) assesses emotion recognition from facial expressions using a set 
of emotionally corresponding dynamic faces. In both tasks, we present visually standardized stimuli depicting 
three emotional states (angry, happy, neutral) from front and side views. In sum, the EmBody/EmFace excels in 
several unique features never employed before in previous tools, including the use of animated body expressions 
(enabling the full control, modification and extraction of each expression’s kinematic features), and the use of 
psychometrically matched facial expressions (allowing for direct comparison of emotion recognition abilities 
from body vs. face cues).

The objective of this study was to validate the EmBody/EmFace in a large sample of men and women. First, we 
hypothesized that it would demonstrate good reliability as indicated by measures of both tasks’ retest reliability 
over a four-week time span. Second, we assumed that the EmBody/EmFace would reveal high convergent validity, 
as indicated by significant correlations between each task’s sum score and established measures associated with 
emotion recognition abilities, i.e., the  RMET18 and the Autism Spectrum Quotient (AQ)29. Third, we hypothesized 
convincing discriminant validity as indicated by the absence of significant correlations between the sum scores in 
the EmBody and EmFace subtasks and measures of intelligence, i.e., performance in Raven’s Standard Progressive 
 Matrices30 and a vocabulary  test31. This statistical independence was assumed, as previous  research32 supports 
the notion that emotion recognition is psychometrically different from established facets of intelligence such 
as abstract reasoning or verbal  comprehension33. Taken together, we sought to demonstrate that the EmBody/
EmFace meets the highest psychometric standards, thus qualifying it for a broad range of applications.

Method
The EmBody/EmFace is freely available for non-commercial use in research and can be downloaded from https:// 
www. psych ologie. uni- freib urg. de/ EmBody- EmFace. To maximize accessibility, we provide: (1) all EmBody and 
EmFace stimuli; (2) a ready-to-use file to launch EmBody and/or EmFace and instantly display test results via 
the free and open-source experimental software  jsPsych34 that allows users to run the test either offline on a local 
computer (presented via any installed internet browser) or online (hosted on a public web server, e.g., Pavlovia, 
JATOS, or PsiTurk).
EmBody/EmFace—design and item construction. The following paragraphs describe the design and 
stimulus development of the EmBody/EmFace. All items stem from a large pool of emotion expressions newly 
created in our laboratory. Item selection and scale construction was based on data from two comprehensive pilot 
studies (see supplemental materials). The experiment was programmed using  jsPsych34 and presented online 
using the hosting provider Pavlovia (Ilixa Ltd., Nottinghamshire, United Kingdom, https:// pavlo via. org/).

EmBody. The EmBody subtask comprises 42 stimuli showing body expressions of angry, happy, or neutral 
affect (14 clips per emotion, half in front view and half in half-profile side view from the left). All stimuli last 1.5 s 
at 24 frames per second. Figure 1a depicts an example for a happy expression; the dynamic clip can be found in 
the supplemental materials.

Each trial consists of one point-light display (PLD), followed by a response window during which participants 
are asked to indicate via mouse input which emotion they believe was portrayed in the PLD in a three-option 
forced-choice format (ANGRY—NEUTRAL—HAPPY, see Fig. 1c). Item order is pseudorandom to prevent 
sequence effects and was determined using the following constraints: the same emotion is shown no more than 
twice in a row; the same view per emotion is not shown consecutively (i.e., no angry–front, angry–front). Test-
halves are counterbalanced for emotions and view (front/side) and separated by a resting trial whose duration 
could be determined individually by each participant. Task duration is approximately 5 min.

Stimulus development. To eliminate the need for a human agent, we used an animated humanoid 3D model 
to derive the PLD stimuli. PLDs were created using the open source 3D software Blender (release 2.79b; Blender 
Foundation, 2018). Humanoid body templates were designed using the ManuelBastioniLAB open source char-
acter editor (version 1.6.1a, https:// github. com/ anima te1978/ MB- Lab). The 3D model was modified to accom-
modate for the natural sagittal asymmetry found in the human body (e.g., slight leg-length inequality or pelvic 

https://www.psychologie.uni-freiburg.de/EmBody-EmFace
https://www.psychologie.uni-freiburg.de/EmBody-EmFace
https://pavlovia.org/
https://github.com/animate1978/MB-Lab
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asymmetry)35. A marker layer consisting of 15 white spheres placed centrally on the major joints and the head 
was added to the humanoid’s skeleton. The background color was set to black. The humanoid was animated to 
make different emotional movements. To make them as realistic as possible, slight kinematic asymmetry and 
motion noise (mainly in otherwise resting body parts) were added to each model. To create the final PLDs, the 
marker layer was rendered from two viewpoints (frontal view, 45° half-profile side view from the left). Figure 2 
shows the 3D model in detail.

Theoretical considerations regarding the use of 3D animated body expression. Previous studies on the process-
ing of (emotional) body expressions predominantly used PLDs as visual  stimuli36–40. PLDs depict the human 
body as dots placed at the major joints without visible inter-joint connections, providing minimalistic motion 
cues without information about the agent’s clothing  style41. Empirical data suggest that PLDs are processed in 
a manner similar to full-body displays while achieving high visual  standardization12,21. Hence, PLDs represent 
ideal cues for experimentally studying recognition from emotional body expressions. The traditional approach 
to create point-light displays via motion capturing systems is, however, hampered by the lack of control over 
the movements’ physical characteristics, and is associated with time-consuming post-editing procedures. Fur-
thermore, stimulus quality crucially depends on the agent’s expressive  capabilities42. Our innovative approach 
to generate PLDs based on a 3D animated humanoid model circumvents the disadvantages of previous motion 
capture systems and offers unprecedented potential in that it allows to easily extract and/or adjust specific kin-
ematic features (such as its speed, acceleration, and jerkiness) once the emotional movement is recorded.

Figure 1.  Examples of static frames of dynamic videos. (a) EmBody stimulus of the scale Happy showing a “La 
Ola” wave motion, (b) EmFace stimulus of the scale Angry, (c) the response window prompting participants to 
select the emotion they believe was portrayed in the preceeding EmBody or EmFace stimulus. Dynamic versions 
of the respective stimuli can be found online in the supplemental materials of this article.
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EmFace. The EmFace subtask comprises 42 stimuli showing facial expressions of angry, happy, or neutral affect 
(14 per emotion, half in front view and half in half-profile side view from the left). Stimuli last 1.5  s at 24 
frames per second and are geometrically and optically standardized (equalized for mean luminance and con-
trast, framed by a black oval mask, for details see description of stimulus development below) to prevent biases 
induced by ethnic cues (e.g., hair or skin tone) or clothing. A sample stimulus of an angry expression is shown 
in Fig. 1b, the dynamic clip can be found online in the supplemental materials.

As in the EmBody subtask, each trial consists of one video followed by a window presenting the three-option 
forced-choice response format (ANGRY—NEUTRAL—HAPPY, see Fig. 1c). Stimuli are in pseudorandom order 
following the constraints described for the EmBody subtask. Additionally, the same actor/actress is not shown 
twice in a row and individuals of the same sex are not shown more than twice in a row. Test-halves were coun-
terbalanced for emotions and view (front/side) and separated by a resting trial whose duration could be set 
individually by each participant. Task duration is approximately 5 min.

Stimulus development. For the EmFace task, we modified stimuli from  theADFES17 (with permission of the 
corresponding senior author Dr. Agneta Fischer). Videos depict angry, happy, and neutral facial expressions 
portrayed by North-European, Turkish, and North-African actors and actresses. Each expression is shown from 
the front and side view. First, the original ADFES videos were slowed down. Using the open-source tool But-
terflow (version 0.2.4.dev0; http:// www. github. com/ dthph am/ butte rflow), we applied motion interpolation to 
create additional frames and lowered thereby the video’s speed without apparent choppiness. Digital editing was 
done in Adobe After Effects (version 16.0.1.48) and included stabilization against excess head motion as well as 
basic retouching to remove visually prominent features (major skin imperfections, malpositioned teeth). Videos 
were trimmed to a uniform length of 1.5 s using Movavi Video Suite (version 18.4.0). Geometric and optical 
standardization was carried out as recommended by Gronenschild and  colleagues43. After faces were centered 
and scaled to the same size, an oval mask with a width-to-height ratio of 1.3/1.6 was added. All videos were 
equalized for mean luminance and contrast using the SHINE_color toolbox for Matlab (version 0.2; https:// osf. 
io/ auzjy/). We used the lumMatch setting to preserve maximum video quality.

Difficulty matching. Item difficulties of all EmBody and EmFace items were defined as the percentage of sub-
jects who identified the correct emotion. We iteratively selected stimuli from each paradigm until all final emo-
tion-specific scales were matched in their difficulty levels.

EmBody/EmFace—validation study. Participants. For our validation study, we recruited a sample of 
healthy male and female participants (i.e., free of medication and psychopathological symptoms). Calls for par-
ticipation were shared online via our laboratory’s homepage, university mailing lists,  social media sites, and 
community forums. Inclusion criteria were age 20 to 30, normal or corrected-to-normal vision, and German as 
native language. Exclusion criteria were a history of or current neurological or psychiatric condition, recent psy-
chotherapy (during past two years), medication intake (including hormonal contraception) or consumption of 
illegal drugs, and study subject psychology. Moreover, all participants were screened for signs of psychopathol-

Figure 2.  Detailed view of the 3D humanoid model used to create the final EmBody stimuli (point-light 
displays). The model consists of a human body (a), an animatable underlying skeleton (b), and the white spheres 
used to create the resulting point-light displays (c).

http://www.github.com/dthpham/butterflow
https://osf.io/auzjy/
https://osf.io/auzjy/
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ogy (anxiety, depression, somatic symptoms) using the German version of the Brief Symptom  Inventory44 and 
excluded if they achieved a sum score of  ≥ 10 or reported suicidal thoughts. Females were additionally screened 
for being pregnant or breastfeeding, and were excluded if they screened positive for either criterion.

Our initial sample consisted of 258 healthy adults (118 m, 140 f, see Sample size calculation). None of the 
participants had participated in one of our Department’s pilot studies. We excluded participants for whom 
technical problems led to a data loss at session 1 (1 m, 1 f), who dropped out before session 2 (6 m, 7 f), who 
performed below the chance level and/or showed a response pattern suggesting non-compliant behavior (”click-
ing through”) in either the EmBody or the EmFace subtask at one or both sessions (1 m, 2 f), or who reported 
clinically significant levels of autistic traits (i.e., AQ score ≥ 32), depression (i.e., score in the Beck Depression 
Inventory [BDI-II]45 of ≥ 20) (4 m, 19 f). The CONSORT flow diagram of exclusions can be found in Figure S1. 
Our final sample consisted of N = 217 (106 m, 111 f) with a mean age of 24.63 (SD = 2.99) years (see Table 1).

Sample size calculation. To detect meaningful two-tailed correlations between our novel tool and other meas-
ures of interest, we ran an a priori power analysis in G*Power (version 3.1.9.6)46. Previous literature suggested 
small to medium correlations between different emotion recognition tasks using (static) emotional  faces47 as 
well as small correlations between emotion recognition tasks and intelligence  measures48. We therefore entered 
a small to medium effect size of r = .20 and an alpha of .05 into our analysis. Results suggested that a sample size 
of 191 participants was required to achieve a power .80. To generously account for potential dropouts during the 
course of the study, we sought to recruit around 250 participants.

Additional tasks. To validate our tools against an established emotion recognition test (convergent validity), 
we administered a computerized version of the RMET, revised  version18. The RMET consists of 36 grayscale 
photographs depicting the eye region of emotional faces. For each stimulus, four mental state descriptors (one 
target, three foils) are presented at each corner of the image. Participants were asked to click on the word that 
best described what the person in the picture is thinking or feeling. As an additional measure for convergent 
validity, we assessed self-reported autistic traits using a German translation of the  AQ29.

To evaluate divergent validity, we assessed two measures of intelligence: To assess non-verbal intelligence, 
we used a computerized nine-item short version of the Raven’s Standard Progressive Matrices (RSPM-9, Form 
A)30. Each item consisted of a black-and-white image with one part missing. The target puzzle piece plus five to 
seven distractors were depicted below each image. Participants were asked to choose the best answer. To assess 
verbal intelligence, participants completed a German multiple-choice vocabulary test (Wortschatztest, WST)31. 
Each of the 42 items consists of one target word and five pseudo-words as distractors. Participants were asked to 
click on the real word in each line. All tasks were presented without a time limit and performance was defined as 
the number of correct solutions, on the basis of which a verbal IQ was computed following the WST’s  manual31.

Furthermore, we assessed psychometric questionnaires to confirm that our validation sample consisted of 
healthy subjects. In addition to the aforementioned  AQ29, assessing autistic traits, we used the German version 
of the BDI-II45 to assess depressive symptoms.

Experimental procedure. To assess data on the EmBody/EmFace’s psychometric properties, we conducted an 
online validation study comprising two study appointments four weeks apart. After filling out an online screen-
ing questionnaire (see the ‘Participants’ section for detailed inclusion/exclusion criteria), participants were con-
tacted via email to schedule Session 1. At the scheduled date and time, participants were telephoned by an 
experimenter and given detailed instructions to prevent distractions or technical issues while conducting the 
experiment (e.g., to turn off the phone and inform family and/or roommates about not wanting to be disturbed 
for the duration of the experiment). During Session 1, participants completed the EmBody, the EmFace, the 
RMET, and the nonverbal and verbal intelligence task. During Session 2, participants repeated the EmBody, the 
EmFace, and the RMET and filled in questionnaires. The EmBody and EmFace stimuli were presented in a fixed 
order at Sessions 1 and 2 (see description of the paradigms above). There was no time limit for completing each 
session. The whole study was approved by the ethics committee of the University of Freiburg and was conducted 
in accordance with the Declaration of Helsinki. Written informed consent was obtained prior to study partici-
pation; all participants were reimbursed for their time with a voucher to an online marketplace of their choice.

Analyses. Difficulty matching and item selection. In the first step, we checked whether the final EmBody and 
EmFace subtasks were successfully matched with regard to score variance and scale difficulty. We first tested 

Table 1.  Characteristics of our sample in the validation study (mean ± SD). Group differences were explored 
using two-tailed independent samples t-tests.

Male (n = 106) Female (n = 111) p Cohen’s d

Age 24.9 ± 2.93 24.3 ± 3.02 .12 0.20

AQ 18.5 ± 6.09 16.7 ± 5.32 .02 0.31

BDI-II 6.5 ± 4.25 7.1 ± 5.20 .35 0.13

Verbal IQ 108.4 ± 10.20 106.4 ± 8.49 .13 0.21

Raven 7.5 ± 1.47 7.2 ± 1.60 .11 0.19
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whether participant scores were evenly dispersed across all scales of the EmBody and the EmFace. For this 
purpose, we computed Levene’s test of homogeneity of variance for individual performance measured by raw 
hit rates across the six scales (EmBody–Angry, EmBody–Happy, EmBody–neutral, EmFace–Angry, EmFace–
Happy, EmFace–Neutral). Next, we tested whether all scales were successfully matched in difficulty. For this 
purpose, we computed a repeated measures ANOVA with individual performance measured by participants’ 
raw hit rates as the dependent variable. Subtask (EmBody, EmFace) and emotion (Angry, Happy, Neutral) were 
added as repeated-measures factors. We added sex (male, female) as a between-subject factor to explore whether 
performance levels were equal across male and female participants. To provide further statistical evidence that 
performance differences across scales were not meaningful in size, we conducted equivalence tests for paired 
samples in R (version 4.1.1) using the package  TOSTER49 (also  see50,51). This procedure evaluates whether the 
90% confidence interval of an effect of interest falls between a predefined upper and lower bound, and tests 
whether observed non-significant effects are equivalent to zero. Here, we used a Cohen’s dZ of ± 0.20, which 
represents a small effect size as the smallest effect of interest.

Psychometric properties. In the second step, we determined relevant psychometric properties for both para-
digms. As a measure of reliability, we explored retest reliability using intra-class correlation coefficients (ICC; 
two-way mixed effects model, type absolute agreement, average measurement) to evaluate the consistency of 
ratings in the EmBody and EmFace between Sessions 1 and 2 four weeks later. In addition, we analyzed Bland–
Altman plots (see supplemental materials, Figure S3). In these plots, individual score changes over time were 
plotted against individual means of test and retest scores  ([ScoreSession 2 −  ScoreSession 1]/2). To determine if mean 
score changes deviate from zero, a 95% CI of the mean difference was computed  (see52,53). Limits of agreement 
estimate the interval within which 95% of the changes from Session 1 to Session 2 lie.

To explore convergent validity, we calculated correlations between scores in the EmBody and the EmFace, 
respectively, and RMET and AQ scores. For divergent validity, we computed correlations between scores in the 
EmBody and the EmFace and the two intelligence measures (vocabulary test and Raven Progressive Matrices). 
Due to violations of the normality assumption for most variables, we computed two-tailed Spearman rank cor-
relations (rS). For non-significant correlations, we also ran equivalence tests in R (version 4.1.1) using the package 
 TOSTER49 (also  see51) to explore whether observed associations were equivalent to zero. We defined the smallest 
effect of interest as r = .10, corresponding to a small effect size.

Factorial validity was evaluated using principal component analyses (PCAs) with orthogonal rotation (Vari-
max). To explore whether the three emotions underlying our stimuli (Angry, Happy, Neutral) would be reflected 
in the factorial structure of our stimuli, we forced the PCA to extract three components.

Results
Matching of EmBody and EmFace. As intended, the EmBody and EmFace scales did not differ in score 
variance and difficulty. Levene’s test showed that variances of participant scores were equal across the six scales of 
the EmBody and EmFace, F(5, 1296) = .42, p = .83. Furthermore, the EmBody and EmFace scales were success-
fully matched for difficulty (see Table 2). Performance did not differ as a function of the factors subtask, emotion, 
sex, or their interactions, as indicated by non-significant main and interaction effects in the repeated meas-
ures ANOVA (smallest p = .19, largest η2 = .008, for detailed test statistics see supplemental materials, Table S1). 
Equivalence tests confirmed that the mean differences we observed between most of the EmBody and EmFace 
scales were equivalent to zero (see Figure S2). Difficulties of individual items in the EmBody and EmFace in 
the form of confusion matrices (showing the proportion of participants who responded either ‘angry’, ‘happy’, 

Table 2.  Participant performance for the EmBody and the EmFace and their scales (mean ± SD). Value ranges 
for all scales are reported in parentheses.

Whole task
(0 − 42)

Scale angry
(0 − 14)

Scale happy
(0 − 14)

Scale neutral
(0 − 14)

EmBody 31.86 ± 3.72 10.49 ± 2.28 10.74 ± 2.36 10.63 ± 2.51

EmFace 31.96 ± 3.77 10.69 ± 2.38 10.74 ± 2.33 10.53 ± 2.50

Table 3.  Correlations between scores in the EmBody and the EmFace. Scores were collected at Session 
1. Asterisks indicate statistically significant Spearman rank (rS) correlation coefficients: *p < .05, **p < .01, 
***p < .001. Correlations for corresponding scales are printed in bold type.

EmFace

EmBody

Whole task Scale angry Scale happy Scale neutral

Whole task .24*** .20** .13 .07

Scale Angry .11 .20** .14* − .14*

Scale Happy .14* .26*** .16* − .17*

Scale Neutral .12 − .16* − .09 .43***
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or ‘neutral’ for each item) can be found in Table S2. In line with our expectations, scores in the EmBody and 
EmFace at Session 1 showed significant positive correlations for both the tasks as a whole as well as all emotion-
equivalent individual scales (see Table 3). 

Psychometric properties of the EmBody subtask. Reliability. We explored the EmBody’s retest reli-
ability over a four-week interval. Stability of test scores was good to excellent (as per guidelines  in54) for both 
the EmBody as a whole and its three scales (see Table 4). Inspection of the Bland–Altman plot (see Figure S3) 
showed a mean score change of 0.49, 95% CI [0.03, 0.96], indicating that individual scores on average changed 
less than one raw point over time. Taken together, these findings indicate the EmBody’s reliability, and demon-
strate the excellent stability of test scores over a time span of four weeks.

Validity. To assess validity, we first analyzed if the EmBody correlates with other established measures associ-
ated with emotion recognition capability (i.e., convergent validity). Notably, and as predicted in our second 
hypothesis, it showed a significant positive correlation with RMET scores (rS [216] = .22, p = .001; see Fig. 3). 
However, we detected no significant correlation with AQ scores as a measure of autistic traits in our healthy 
study population (rS [216] =  − .05, p = .43). Next, we analyzed if the EmBody showed meaningful associations 
with measures that should not be related with emotion recognition capabilities. In line with our assumptions of 
hypothesis three, we detected no significant association between the EmBody and RSPM-9 scores (rS [216] = .09, 
p = .21) or verbal IQ (rS [216] = .05, p = .51), demonstrating the EmBody’s divergent validity (note that equiva-
lence testing suggested that the observed correlations were not equivalent to zero when compared against a small 
effect; for details, see Figure S4). In the scree plot of eigenvalues used to explore factorial validity, the point at 
which the curve bends (“elbow”) confirmed good fit of a three-factorial solution for the EmBody (eigenvalues of 
4.0, 2.5, and 2.3; see Table S3 for detailed results). Altogether, our findings demonstrate the EmBody’s validity, as 
indicated by measures of convergent and divergent measures and in terms of factorial validity.

Psychometric properties of the EmFace subtask. Reliability. Again, we explored the EmFace’s retest 
reliability. As can be seen in Table 4, the scores’ stability was good to excellent (as per guidelines  in54) for the 
EmFace as a whole and its three scales. The Bland–Altman plot (see Figure S3) showed a mean score change of 
0.63, 95% CI [0.18, 1.08], suggesting that individual scores on average changed less than one raw point over time. 

Table 4.  Retest reliability of the EmBody and the EmFace as intraclass correlation coefficients (ICC) for 
raw hit rates. ICCs use the two-way mixed effects model, type absolute agreement, average measurement. 
95% confidence intervals (95% CI) for each ICC are reported in square brackets. For comparison, the ICC 
computed for RMET scores was .73 [.65, .79].

Whole task Angry scale Happy scale Neutral scale

EmBody .71 [.63, .78] .74 [.65, .81] .78 [.71, .83] .79 [.73, .84]

EmFace .72 [.63, .78] .77 [.71, .83] .69 [.60, .76] .77 [.70, .83]

Figure 3.  Relationship between sum scores in the EmBody and the RMET. The graph shows a line of best fit 
and the 95% confidence interval (shaded bands). Dots are semi-transparent so that locations with overlapping 
data points are darker.
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In line with our first hypothesis, these findings demonstrate the EmFace’s reliability, and attest to its test scores’ 
excellent stability over a four-week interval.

Validity. We again demonstrated the EmFace’s construct validity by assessing its convergent validity with 
established measures of emotion recognition, i.e., the RMET and the AQ, and its divergent validity as indicated 
by the lack of correlation with measures of intelligence, i.e., the RSPM-9 and verbal IQ. In line with our sec-
ond hypothesis, the EmFace showed a significant positive correlation with RMET scores (rS[216] = .15, p = .03; 
see Fig. 4a), and a negative correlation with AQ scores (rS[216] =  − .15, p = .03; see Fig. 4b), demonstrating its 
convergent validity. With regard to divergent validity, the EmFace scores revealed no significant associations 
with RSPM-9 scores (rS [216] = .05, p = .48) or verbal IQ (rS [216] =  − .03, p = .63) (note that equivalence testing 
suggested that the observed correlations were not equivalent to zero when compared against a small effect; for 
details, see Figure S4). The scree plot used to test factorial validity suggested good fit of the assumed three-
factorial solution (eigenvalues of 3.7, 2.5, and 2.2; see Table S3 for detailed results). Taken together, our findings 
demonstrate the EmFace’s validity, as indicated by measures of convergent and divergent measures and in terms 
of factorial validity.

Discussion
In the present study, we introduce the EmBody/EmFace—a novel, highly standardized tool to assess recognition 
performance for emotional body and face expressions. The EmBody/EmFace comprises two parallelized subtasks: 
the first (EmBody) measuring emotion recognition from body expressions using computer-animated dynamic 
point-light displays, and the second (EmFace) measuring emotion recognition from the face using dynamic 
facial expressions psychometrically matched to the first subtask’s items. To our knowledge, the EmBody/EmFace 

Figure 4.  Relationship between the EmFace and (a) RMET sum scores and (b) AQ sum scores, respectively. 
Each graph shows a line of best fit and the 95% confidence interval (shaded bands). Dots are semi-transparent 
so that locations with overlapping data points are darker.
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is the first published and thoroughly validated tool that employs animated point-light displays and enables the 
assessment and direct comparison of emotion recognition in the two expressive modalities (i.e., when processing 
emotional body and face expressions).

This study’s main target was to acquire comprehensive validation data from a large healthy sample of par-
ticipants to evaluate the EmBody/EmFace’s psychometric properties. Overall, it proved to be both reliable and 
valid, thus confirming its broad utility in basic and clinical human research. More specifically, we first confirmed 
both tasks’ reliability through highly stable test scores over a retest-interval of four weeks. With regard to con-
vergent validity, we found significant positive associations between scores in the EmBody and the EmFace and 
the performance in the RMET, which is the most widely used test for emotion  recognition18,55. Interestingly, we 
found that the AQ, repeatedly associated with emotion recognition performance in previous studies, correlated 
negatively with scores in the EmFace but not with scores in the EmBody (see also Fields of Applications).

In line with our expectations, both tasks’ scores did not show meaningful associations with verbal and non-
verbal intelligence. Equivalence tests demonstrated that the associations were not equivalent to zero. This finding 
concurs with recent meta-analytic evidence suggesting that emotion recognition abilities and intelligence are 
weakly associated with each other  (see48). Given that we tested against small effect sizes in the equivalence tests, 
the discriminant validity of the EmBody/EmFace can nonetheless be considered adequate. Finally, we demon-
strated the factorial validity of the EmBody and EmFace subtasks by showing that the three emotional states 
portrayed in the EmBody and EmFace stimuli (i.e., angry, happy, neutral) could be reproduced in the underlying 
three-factor structure of our paradigms.

One key advantage of our newly developed tool lies in its successful psychometrical matching of both emotion 
recognition tasks  (see27), which allows to draw conclusions on the relative impairment of emotion recognition 
from either body or face expressions. From a conceptual perspective, it makes a lot of sense to assume a com-
mon construct underlying both forms of emotion recognition. Our findings that the EmBody and the EmFace, 
as well as their emotion-specific scales showed robust correlations with each other highlight this assumption. 
However, the observed associations were small to medium in size, suggesting that there are also aspects unique 
to each form of emotion recognition. Empirical evidence in support of this notion stems, among others, from 
neuroimaging studies. For example, van de Riet and  colleagues56 found specific brain regions (including sub-
regions of the superior temporal sulcus, parietal lobe and subcortical structures) selectively involved in the 
processing of static face or body expressions, while other regions (e.g., the amygdala and fusiform gyrus) were 
found to be activated across both emotional expression categories. While this study suggests at least partially 
distinct processes underlying emotion recognition from faces and bodies, the investigation of these processes 
is hampered by the lack of suitable paradigms using psychometrically matched tasks. Due to the precise paral-
lelization of the EmBody’s and the EmFace’s item characteristics, the EmBody/EmFace is able to bridge this gap, 
thereby crucially benefitting the broader investigation of underlying psychological as well as neurobiological 
mechanisms common to and specific for face vs. body emotion recognition.

In addition to its psychometrically matched items, the EmBody/EmFace has many other advantages that 
enable maximum control over item characteristics while overcoming several drawbacks of previous tools (e.g., 
expensive motion capture systems or having to depend on the actor’s expressive capabilities). For example, 
we chose to create dynamic stimuli, as these are known to be easier to  recognize57, to offer higher ecological 
 validity58, and to induce stronger neural activation in face-selective regions than their static  counterparts59–62. 
We furthermore decided to use point-light displays to assess recognition from emotional body expressions, as 
they allow for maximum control of interfering information (such as perceived attractiveness or clothing style). 
In addition, our stimuli enable us to assess emotion recognition performance in minimal time: The use of stimuli 
lasting only 1.5 s reduced the final task duration to under 5 min (including instructions), which is highly desirable 
for both behavioral and neuroimaging paradigms, as brief testing durations facilitate implementation in clinical 
routine. Brief stimulus durations might also boost the signal-to-noise ratio when measuring neural correlates of 
emotional  processing63–65. With regard to the choice of emotions, we decided to compare the recognition of angry 
and happy expressions, as these emotions naturally share similar physical characteristics while conveying distinct 
social messages. Body portrayals of anger and happiness entail both fast and energetic movements involving 
increased body  tension1,66 and comparable postural and kinematic  features67, but provoke distinct behavioral 
tendencies in the viewer (i.e., observing happy expressions facilitates social approach, while observing angry 
expressions facilitates avoidance of the potentially threatening angry person)68–71. These emotional expressions’ 
features enable us to investigate the processing of two crucial, but opposing social signals while controlling for 
the potentially confounding impact of low-level stimulus characteristics.

Fields of application. First, the EmBody/EmFace’s intriguing applications lie in the investigation of clinical 
populations. Indeed, emotion recognition deficits are key symptoms of patients suffering from various neuro-
logical and psychiatric disorders, such as  autism5,  schizophrenia72, major  depression73, and anxiety  disorders74,75. 
In our large healthy sample, we detected a negative association between AQ scores as a measure of autistic traits 
and performance in the EmFace. Interestingly, we failed to identify a similar relationship for the EmBody, sug-
gesting that autistic traits might be hindering the successful decoding of emotional expressions from the face but 
not necessarily from the body. This assumption is supported by behavioral patterns frequently associated with 
certain disorders of the social mind. Some of the aforementioned clinical conditions are accompanied by severe 
eye-gaze avoidance (e.g.,76,77). Given that the eye region conveys crucial information about another person’s 
emotional  state76–80, emotion recognition deficits observed for face stimuli could be the result of processing the 
available cues only partially. Recognition from emotional body expressions on the other hand could be intact, at 
least in some of these disorders. However, to our knowledge, there are to date no studies investigating differen-
tial impairments in either body or face emotion recognition via psychometrically-matched tasks. The EmBody/
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EmFace provides the unprecedented opportunity to directly compare emotion recognition from body and face 
cues, thereby enabling to disentangle modality-specific impairments of emotion recognition in psychiatric or 
neurological disorders. Our face-specific finding of a negative correlation between autistic traits and the EmFace 
but not the EmBody score suggests that emotion recognition abilities might indeed be differentially impaired in 
patients on the autism spectrum depending on the emotional signal’s nature. In this context, it would be interest-
ing to also compare the perception of highly standardized PLDs (as used in the EmBody) and more naturalistic 
full-body stimuli (providing even higher ecological validity). Although there is initial evidence that PLDs reveal 
similar disorder-specific deficits across a variety of psychiatric conditions as face stimuli  (see12 for a review), fur-
ther research is needed to explore how the choice of stimulus type (i.e. PLDs vs. full-body stimuli) might affect 
task outcomes. This appears particularly relevant in studying clinical populations, as more naturalistic and hence 
more visually complex stimuli might reveal more nuanced impairments in emotion recognition. Furthermore, 
it would be interesting to explore whether emotion recognition deficits in clinical samples are alleviated when 
processing stimuli with averted compared to direct gaze or posture. Since the EmBody and EmFace subtasks 
include both front and half-profile view of all expressions shown, exploring viewpoint-dependent effects in bod-
ies and faces could be another fruitful approach for future studies.

Second, our items are well-suited for intervention studies. Given that each EmBody and EmFace scale (Angry, 
Happy, Neutral) is solved correctly by about 75% of participants, both tasks leave room for effects of experimental 
manipulations aimed at enhancing emotion recognition performances, such as psychotherapeutic or pharma-
cological interventions (e.g., by administering intranasal  oxytocin81–86). On the other hand, we also included 
rather easy items, with difficulties exceeding 90%, to avoid floor effects in clinical populations with generalized 
cognitive impairments.

Third, other potential applications of the EmBody/EmFace lie in neurobiological and neuroimaging studies. 
For example, we purposely chose a three-option forced-choice response format that would be compatible with 
standard functional neuroimaging button response devices and optically standardized items following guidelines 
for neuroimaging  research43. As seen from the impact of pioneering paradigms in the field of social neuroscience 
(e.g., the  EmpaToM87), there is a strong demand for tasks suitable to explore the neural basis of social cognition.

Finally, another interesting approach would be to explore the influence of culture on emotion recognition. 
Although the social message transported via facial emotional expressions has long been considered to be largely 
 universal88, recent research has challenged this notion, instead highlighting the existence of inter- and intracul-
tural variability in the nonverbal communication of emotions  (see58,89–91). In line with this notion, the commonly 
used term ‘emotion recognition’ could more accurately be described as the subjective inference of emotional 
states from nonverbal displays, which depends strongly on individual (e.g., cultural background, former experi-
ences, …) and situational (e.g., inferring emotions in a work or family context, …) factors  (see58). Accordingly, 
rather than ascribing an objectively “true” emotional content to a stimulus (e.g., a facial or bodily movement), 
the “correct” response on what an emotional stimulus depicts could be interpreted as the majoritarian response 
within a (homogeneous) validation sample. Even though task performance might thus be influenced by culture, 
it is still of high clinical relevance to assess deviations from the majoritarian response which might be associated 
with social misunderstandings (e.g., in immigrant  populations92) and impaired social interactions in general. 
Regarding the EmBody/EmFace, its validation data originate from a western, educated, industrialized, rich, and 
democratic (WEIRD) sample, and is thus useful within WEIRD cultures, while its suitability for studying and 
contrasting groups in Non-WEIRD or across cultures could be limited by cultural bias and should be explored 
in future studies  (see4,58,93,94). Interestingly, for body expressions in particular, there have only been pioneering 
cross-cultural studies (e.g.,95), suggesting that humans are indeed able to infer the intended emotion from body 
expressions displayed by members of other cultural groups. These intriguing findings again highlight the need 
for further studies on how body expressions are perceived not only in patient groups within one comparably 
homogeneous culture, but also across cultures.

Conclusion
In conclusion, the EmBody/EmFace is a powerful tool with which to study emotion recognition from the body 
and the face. Both its subtasks (EmBody, EmFace) are highly standardized, reliably precise, and easy to use, which 
makes them suitable for a broad range of applications in behavioral, neuroimaging, and clinical studies. The 
open source code and material (see ‘Methods’ section) enables individual adjustments, thereby paving the way 
for future studies that illuminate the psychological and neurobiological underpinnings of humans’ emotional 
expressions in both health and disease. In the long term, evidence obtained from the EmBody/EmFace might 
inspire the design of new interventions and personalized therapeutic strategies tackling social interaction dif-
ficulties in disorders such as autism, schizophrenia, or social anxiety.

Received: 18 March 2022; Accepted: 2 August 2022

References
 1. Darwin, C. The Expression of the Emotions in Man and Animals (John Murray, 1872).
 2. Blake, R. & Shiffrar, M. Perception of human motion. Annu. Rev. Psych. 58, 47–73 (2007).
 3. de Gelder, B., De Borst, A. W. & Watson, R. The perception of emotion in body expressions. Wiley Interdiscip. Rev. Cogn. Sci. 6, 

149–158 (2015).
 4. Elfenbein, H. A. & Ambady, N. On the universality and cultural specificity of emotion recognition: A meta-analysis. Psychol. Bull. 

128, 203–253 (2002).



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14165  | https://doi.org/10.1038/s41598-022-17866-w

www.nature.com/scientificreports/

 5. Uljarevic, M. & Hamilton, A. Recognition of emotions in autism: A formal meta-analysis. J. Autism Dev. Disord. 43, 1517–1526 
(2013).

 6. Aviezer, H., Trope, Y. & Todorov, A. Body cues, not facial expressions, discriminate between intense positive and negative emo-
tions. Science 338, 1225–1229 (2012).

 7. de Gelder, B., Snyder, J., Greve, D., Gerard, G. & Hadjikhani, N. Fear fosters flight: A mechanism for fear contagion when perceiv-
ing emotion expressed by a whole body. PNAS 101, 16701–16706 (2004).

 8. de Gelder, B. Towards the neurobiology of emotional body language. Nat. Rev. Neurosci. 7, 242–249 (2006).
 9. Brustkern, J., Heinrichs, M., Walker, M., & Schiller, B. Facial threat affects trust more strongly than facial attractiveness in women 

than it does in men. Sci. Rep. 11(1), 22475. https:// doi. org/ 10. 1038/ s41598- 021- 01775-5 (2021).
 10. Hung, S. M., Nieh, C. H. & Hsieh, P. J. Unconscious processing of facial attractiveness: Invisible attractive faces orient visual atten-

tion. Sci. Rep. 6, 1–8 (2016).
 11. Kret, M. E., Stekelenburg, J. J., de Gelder, B. & Roelofs, K. From face to hand: Attentional bias towards expressive hands in social 

anxiety. Biol. Psychol. 122, 42–50 (2017).
 12. Okruszek, Ł. It is not just in faces! Processing of emotion and intention from biological motion in psychiatric disorders. Front. 

Hum. Neurosci. 12, 48 (2018).
 13. Pica, P., Jackson, S., Blake, R. & Troje, N. F. Comparing biological motion perception in two distinct human societies. PLoS ONE 

6, e28391 (2011).
 14. Lundqvist, D., Flykt, A. & Öhman, A. The Karolinska Directed Emotional Faces—KDEF (Karolinska Institute, 1998).
 15. Langner, O. et al. Presentation and validation of the Radboud Faces Database. Cogn. Emot. 24, 1377–1388 (2010).
 16. Tottenham, N. et al. The NimStim set of facial expressions: judgments from untrained research participants. Psychiatry Res. 168, 

242–249 (2009).
 17. Van Der Schalk, J., Hawk, S. T., Fischer, A. H. & Doosje, B. Moving faces, looking places: validation of the Amsterdam Dynamic 

Facial Expression Set (ADFES). Emotion 11, 907–920 (2011).
 18. Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y. & Plumb, I. The, “Reading the Mind in the Eyes” Test revised version: A study 

with normal adults, and adults with Asperger syndrome or high-functioning autism. J. Child Psychol. 42, 241–251 (2001).
 19. Borgomaneri, S., Gazzola, V. & Avenanti, A. Motor mapping of implied actions during perception of emotional body language. 

Brain Stimul. 5, 70–76 (2012).
 20. Mazzoni, N., Ricciardelli, P., Actis-Grosso, R. & Venuti, P. Difficulties in recognising dynamic but not static emotional body move-

ments in autism spectrum disorder. J. Autism Dev. Disord. 52, 1092–1105 (2022).
 21. Atkinson, A. P., Dittrich, W. H., Gemmell, A. J. & Young, A. W. Emotion perception from dynamic and static body expressions in 

point-light and full-light displays. Perception 33, 717–746 (2004).
 22. Alaerts, K., Nackaerts, E., Meyns, P., Swinnen, S. P. & Wenderoth, N. Action and emotion recognition from point light displays: 

An investigation of gender differences. PLoS ONE 6, e20989 (2011).
 23. Troje, N. F. Decomposing biological motion: A framework for analysis and synthesis of human gait patterns. J. Vis. 2, 2 (2002).
 24. de Gelder, B. & Van den Stock, J. The bodily expressive action stimulus test (BEAST). Construction and validation of a stimulus 

basis for measuring perception of whole body expression of emotions. Front. Psychol. 2, 181 (2011).
 25. Rosenthal, R., Hall, J. A., DiMatteo, M. R., Rogers, P. L. & Archer, D. Sensitivity to Nonverbal Communication: The PONS Test (Johns 

Hopkins University Press, 1979).
 26. Thoma, P., Soria Bauser, D. & Suchan, B. BESST (Bochum Emotional Stimulus Set)—A pilot validation study of a stimulus set 

containing emotional bodies and faces from frontal and averted views. Psychiatry Res. 209, 98–109 (2013).
 27. Chapman, L. J. & Chapman, J. P. The measurement of differential deficit. J. Psych. Res. 14, 303–311 (1978).
 28. Chapman, L. J. & Chapman, J. P. Commentary on two articles concerning generalized and specific cognitive deficits. J. Abnorm. 

Psychol. 110, 31–39 (2001).
 29. Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J. & Clubley, E. The autism-spectrum quotient (AQ): Evidence from asperger 

syndrome/high-functioning autism, males and females, scientists and mathematicians. J. Autism Dev. Disord. 31, 5–17 (2001).
 30. Bilker, W. B. et al. Development of abbreviated nine-item forms of the Raven’s standard progressive matrices test. Assessment 19, 

354–369 (2012).
 31. Schmidt, K.-H. & Metzler, P. WST–Wortschatztest [WST – Vocabulary test] (Beltz, 1992).
 32. Bryan, V. M. & Mayer, J. D. Are people-centered intelligences psychometrically distinct from thing-centered intelligences? A 

meta-analysis. J. Intell. 9, 48 (2021).
 33. Thurstone, L. L. Primary Mental Abilities (University of Chicago Press, 1938).
 34. de Leeuw, J. R. jsPsych: A JavaScript library for creating behavioral experiments in a web browser. Behav. Res. Meth. 47, 1–12 

(2015).
 35. Sadeghi, H., Allard, P., Prince, F. & Labelle, H. Symmetry and limb dominance in able-bodied gait: A review. Gait Posture 12, 34–45 

(2000).
 36. Dekeyser, M., Verfaillie, K. & Vanrie, J. Creating stimuli for the study of biological-motion perception. Behav. Res. Meth. Instrum. 

Comput. 34, 375–382 (2002).
 37. Keefe, B. D. et al. A database of whole-body action videos for the study of action, emotion, and untrustworthiness. Behav. Res. 

Meth. 46, 1042–1051 (2014).
 38. Lapenta, O. M., Xavier, A. P., Côrrea, S. C. & Boggio, P. S. Human biological and nonbiological point-light movements: Creation 

and validation of the dataset. Behav. Res. Meth. 49, 2083–2092 (2017).
 39. Manera, V., Schouten, B., Becchio, C., Bara, B. G. & Verfaillie, K. Inferring intentions from biological motion: A stimulus set of 

point-light communicative interactions. Behav. Res. Methods 42, 168–178 (2010).
 40. Vanrie, J. & Verfaillie, K. Perception of biological motion: A stimulus set of human point-light actions. Behav. Res. Methods Instrum. 

Comput. 36, 625–629 (2004).
 41. Johansson, G. Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14, 201–211 (1973).
 42. Shipley, T. F., & Brumberg, J. S. Markerless motion-capture for point-light displays. https:// nccas taff. bourn emouth. ac. uk/ hncha 

rif/ Maths CGs/ Deskt op/ Resea rch/ Markl ess% 20Mot ion% 20Cap ture/ Marke rless MoCap- 2003. pdf (2005).
 43. Gronenschild, E. H., Smeets, F., Vuurman, E. F., van Boxtel, M. P. & Jolles, J. The use of faces as stimuli in neuroimaging and 

psychological experiments: A procedure to standardize stimulus features. Behav. Res. Meth. 41, 1053–1106 (2009).
 44. Franke, G. H. Symptom Inventory von L.R. Derogatis (Kurzform der SCL-90-R) – deutsche Version – Manual [Brief Symptom Inven-

tory by L.R. Derogatis (Short form of the SCL-90-R) – German Version – Manual)]. (Beltz, 2000).
 45. Hautzinger, M., Keller, F., & Kühner, C. Beck-Depressions-Inventar Revision (2. Auflage) [Beck Depression Inventory (2nd Ed.)]. 

(Pearson, 2009).
 46. Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, 

and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).
 47. Bänziger, T., Grandjean, D. & Scherer, K. R. Emotion recognition from expressions in face, voice, and body: the Multimodal Emo-

tion Recognition Test (MERT). Emotion 9, 691–704 (2009).
 48. Schlegel, K. et al. A meta-analysis of the relationship between emotion recognition ability and intelligence. Cogn. Emot. 34, 329–351 

(2020).

https://doi.org/10.1038/s41598-021-01775-5
https://nccastaff.bournemouth.ac.uk/hncharif/MathsCGs/Desktop/Research/Markless%20Motion%20Capture/MarkerlessMoCap-2003.pdf
https://nccastaff.bournemouth.ac.uk/hncharif/MathsCGs/Desktop/Research/Markless%20Motion%20Capture/MarkerlessMoCap-2003.pdf


12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14165  | https://doi.org/10.1038/s41598-022-17866-w

www.nature.com/scientificreports/

 49. Lakens, D. Equivalence tests: A practical primer for t tests, correlations, and meta-analyses. Soc. Psychol. Personal. Sci. 8, 355–362 
(2017).

 50. Goertzen, J. R. & Cribbie, R. A. Detecting a lack of association: An equivalence testing approach. Br. J. Math. Stat. Psychol. 63, 
527–537 (2010).

 51. Lakens, D., Scheel, A. M. & Isager, P. M. Equivalence testing for psychological research: A tutorial. Adv. Methods Pract. Psychol. 
Sci. 1, 259–269 (2018).

 52. Berchtold, A. Test–retest: agreement or reliability?. Methodol. Innov. 9, 1–7 (2016).
 53. Koo, T. K. & Li, M. Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. 

Med. 15, 155–163 (2016).
 54. Fleiss, J. L. The Design and Analysis of Clinical Experiments (Wiley, 1986).
 55. Baker, C. A., Peterson, E., Pulos, S. & Kirkland, R. A. Eyes and IQ: A meta-analysis of the relationship between intelligence and 

“Reading the Mind in the Eyes”. Intelligence 44, 78–92 (2014).
 56. van de Riet, W. A. C., Grèzes, J. & de Gelder, B. Specific and common brain regions involved in the perception of faces and bodies 

and the representation of their emotional expressions. Social Neurosci. 4, 101–120 (2009).
 57. Ambadar, Z., Schooler, J. W. & Cohn, J. F. Deciphering the Enigmatic Face: The importance of facial dynamics in interpreting 

subtle facial expressions. Psychol. Sci. 16, 403–410 (2005).
 58. Barrett, L. F., Adolphs, R., Marsella, S., Martinez, A. M. & Pollak, S. D. Emotional expressions reconsidered: Challenges to inferring 

emotion from human facial movements. Psychol. Sci. Public Interest 20, 1–68 (2019).
 59. Fox, C. J., Iaria, G. & Barton, J. J. Defining the face processing network: optimization of the functional localizer in fMRI. Hum. 

Brain Mapp. 30, 1637–1651 (2009).
 60. Kilts, C. D., Egan, G., Gideon, D. A., Ely, T. D. & Hoffman, J. M. Dissociable neural pathways are involved in the recognition of 

emotion in static and dynamic facial expressions. Neuroimage 18, 156–168 (2003).
 61. Pitcher, D., Dilks, D. D., Saxe, R. R., Triantafyllou, C. & Kanwisher, N. Differential selectivity for dynamic versus static information 

in face-selective cortical regions. Neuroimage 56, 2356–2363 (2011).
 62. Sato, W., Kochiyama, T., Yoshikawa, S., Naito, E. & Matsumura, M. Enhanced neural activity in response to dynamic facial expres-

sions of emotion: an fMRI study. Cogn. Brain Res. 20, 81–91 (2004).
 63. Birn, R. M., Saad, Z. S. & Bandettini, P. A. Spatial heterogeneity of the nonlinear dynamics in the fMRI BOLD response. Neuroim-

age 14, 817–826 (2001).
 64. Glover, G. H. Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage 9, 416–429 (1999).
 65. Miller, K. L. et al. Nonlinear temporal dynamics of the cerebral blood flow response. Hum. Brain Mapp. 13, 1–12 (2001).
 66. Pollick, F. E., Paterson, H. M., Bruderlin, A. & Sanford, A. J. Perceiving affect from arm movement. Cognition 82, B51–B61 (2001).
 67. Poyo Solanas, M., Vaessen, M. J. & de Gelder, B. The role of computational and subjective features in emotional body expressions. 

Sci. Rep. 10, 1–13 (2020).
 68. Juth, P., Lundqvist, D., Karlsson, A. & Öhman, A. Looking for foes and friends: perceptual and emotional factors when finding a 

face in the crowd. Emotion 5, 379–395 (2005).
 69. Marsh, A. A., Ambady, N. & Kleck, R. E. The effects of fear and anger facial expressions on approach-and avoidance-related 

behaviors. Emotion 5, 119–124 (2005).
 70. Phaf, R. H., Mohr, S. E., Rotteveel, M. & Wicherts, J. M. Approach, avoidance, and affect: A meta-analysis of approach-avoidance 

tendencies in manual reaction time tasks. Front. Psychol. 5, 378 (2014).
 71. Seidel, E. M., Habel, U., Kirschner, M., Gur, R. C. & Derntl, B. The impact of facial emotional expressions on behavioral tendencies 

in women and men. J. Exp. Psychol. Hum. Percept. Perform. 36, 500–507 (2010).
 72. Kohler, C. G., Walker, J. B., Martin, E. A., Healey, K. M. & Moberg, P. J. Facial emotion perception in schizophrenia: A meta-analytic 

review. Schizophr. Bull. 36, 1009–1019 (2010).
 73. Dalili, M. N., Penton-Voak, I. S., Harmer, C. J. & Munafò, M. R. Meta-analysis of emotion recognition deficits in major depressive 

disorder. Psychol. Med. 45, 1135–1144 (2015).
 74. Demenescu, L. R., Kortekaas, R., den Boer, J. A. & Aleman, A. Impaired attribution of emotion to facial expressions in anxiety and 

major depression. PLoS ONE 5, e15058 (2010).
 75. Plana, I., Lavoie, M. A., Battaglia, M. & Achim, A. M. A meta-analysis and scoping review of social cognition performance in social 

phobia, posttraumatic stress disorder and other anxiety disorders. J. Anxiety Disord. 28, 169–177 (2014).
 76. Horley, K., Williams, L. M., Gonsalvez, C. & Gordon, E. Social phobics do not see eye to eye: A visual scanpath study of emotional 

expression processing. J. Anxiety Disord. 17, 33–44 (2003).
 77. Senju, A. & Johnson, M. H. Atypical eye contact in autism: models, mechanisms and development. Neurosci. Biobehav. Rev. 33, 

1204–1214 (2009).
 78. Adolphs, R. et al. A mechanism for impaired fear recognition after amygdala damage. Nature 433, 68–72 (2005).
 79. Chen, F. S., Minson, J. A., Schöne, M. & Heinrichs, M. In the eye of the beholder: eye contact increases resistance to persuasion. 

Psychol. Sci. 24, 2254–2261 (2013).
 80. Emery, N. J. The eyes have it: The neuroethology, function and evolution of social gaze. Neurosci. Biobehav. Rev. 24, 581–604 (2000).
 81. Kanat, M., Heinrichs, M., Mader, I., van Elst, L. T. & Domes, G. Oxytocin modulates amygdala reactivity to masked fearful eyes. 

Neuropsychopharmacology 40, 2632–2638 (2015).
 82. Scheller, E., Büchel, C. & Gamer, M. Diagnostic features of emotional expressions are processed preferentially. PLoS ONE 7, e41792 

(2012).
 83. Auyeung, B. et al. Oxytocin increases eye contact during a real-time, naturalistic social interaction in males with and without 

autism. Transl. Psychiat. 5, e507 (2015).
 84. Domes, G., Heinrichs, M., Michel, A., Berger, C. & Herpertz, S. C. Oxytocin improves “mind-reading” in humans. Biol. Psychiatry 

61, 731–733 (2007).
 85. Domes, G., Steiner, A., Porges, S. W. & Heinrichs, M. Oxytocin differentially modulates eye gaze to naturalistic social signals of 

happiness and anger. Psychoneuroendocrinology 38, 1198–1202 (2013).
 86. Spengler, F. B. et al. Kinetics and dose dependency of intranasal oxytocin effects on amygdala reactivity. Biol. Psychiatry 82, 885–894 

(2017).
 87. Kanske, P., Böckler, A., Trautwein, F. M. & Singer, T. Dissecting the social brain: Introducing the EmpaToM to reveal distinct neural 

networks and brain–behavior relations for empathy and Theory of Mind. Neuroimage 122, 6–19 (2015).
 88. Ekman, P. & Friesen, W. V. Constants across cultures in the face and emotion. J. Pers. Soc. Psychol. 17, 124–129 (1971).
 89. Gendron, M., Crivelli, C. & Barrett, L. F. Universality reconsidered: Diversity in making meaning of facial expressions. Curr. Dir. 

Psychol. Sci. 27, 211–219 (2018).
 90. Durán, J. I. & Fernández-Dols, J. M. Do emotions result in their predicted facial expressions? A meta-analysis of studies on the 

co-occurrence of expression and emotion. Emotion 21, 1550–1569 (2021).
 91. Crivelli, C. & Fridlund, A. J. Facial displays are tools for social influence. Trends Cogn. Sci. 22, 388–399 (2018).
 92. Bjornsdottir, R. T. & Rule, N. O. On the relationship between acculturation and intercultural understanding: Insight from the 

Reading the Mind in the Eyes test. Int. J. Intercult. Relat. 52, 39–48 (2016).
 93. Henrich, J., Heine, S. J. & Norenzayan, A. Most people are not WEIRD. Nature 466, 29 (2010).
 94. Hubley, A. M. & Zumbo, B. D. Validity and the consequences of test interpretation and use. Soc. Indic. Res. 103, 219–230 (2011).



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14165  | https://doi.org/10.1038/s41598-022-17866-w

www.nature.com/scientificreports/

 95. Parkinson, C., Walker, T. T., Memmi, S. & Wheatley, T. Emotions are understood from biological motion across remote cultures. 
Emotion 17, 459–477 (2017).

Acknowledgements
We are grateful to Pauline Beckmann, Bastian Eggers Salvo, Magdalena Koch, Greta Panschar, Luciana Salcedo 
Nieto, Miriam Schmid, Pauline Turk, Julia Voss, Stefanie Weissenberger, and Lia York for assistance during 
data collection, and Dr. Agneta Fischer for permission to use and modify the ADFES face stimuli. We have no 
conflicts of interest to disclose.

Author contributions
L.L.L. conceptualized and designed the experiments, collected and analyzed data, and drafted the manuscript. 
F.B.S. and M.H. conceptualized and designed the experiments and supervised the study, analyzed and interpreted 
data, and drafted the manuscript. B.S. and T.S. analyzed and interpreted data, and revised the manuscript. All 
authors approved the final manuscript as submitted.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 17866-w.

Correspondence and requests for materials should be addressed to F.B.S. or M.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-17866-w
https://doi.org/10.1038/s41598-022-17866-w
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	EmBodyEmFace as a new open tool to assess emotion recognition from body and face expressions
	Method
	EmBodyEmFace—design and item construction. 
	EmBody. 
	Stimulus development. 
	Theoretical considerations regarding the use of 3D animated body expression. 

	EmFace. 
	Stimulus development. 

	Difficulty matching. 

	EmBodyEmFace—validation study. 
	Participants. 
	Sample size calculation. 
	Additional tasks. 
	Experimental procedure. 
	Analyses. 
	Difficulty matching and item selection. 
	Psychometric properties. 



	Results
	Matching of EmBody and EmFace. 
	Psychometric properties of the EmBody subtask. 
	Reliability. 
	Validity. 

	Psychometric properties of the EmFace subtask. 
	Reliability. 
	Validity. 


	Discussion
	Fields of application. 

	Conclusion
	References
	Acknowledgements


