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Abstract

This study aimed to provide a currently missing link between general intoxication-

induced changes in overall brain activity and the multiple cognitive control deficits

typically observed during acute alcohol intoxication. For that purpose, we analyzed

the effects of acute alcohol intoxication (1.1‰) on the four archetypal electroen-

cephalography (EEG) resting networks (i.e., microstates A–D) and their temporal

dynamics (e.g., coverage and transitions from one microstate to another), as well as

on self-reported resting-state cognition in n = 22 healthy young males using a

counterbalanced within-subject design. Our microstate analyses indicated that

alcohol increased the coverage of the visual processing-related microstate B at the

expense of the autonomic processing-related microstate C. Add-on exploratory ana-

lyses revealed that alcohol increased transitions from microstate C to microstate B

and decreased bidirectional transitions between microstate C and the attention-

related microstate D. In line with the observed alcohol-induced decrease of the

autonomic processing-related microstate C, participants reported decreases of their

somatic awareness during intoxication, which were positively associated with more

transitions from microstate C to microstate B. In sum, the observed effects provide

mechanistic insights into how alcohol might hamper cognitive processing by generally

prioritizing the bottom-up processing of visual stimuli over top-down internal

information processing. The fact that this was found during the resting state further

proves that alcohol-induced changes in brain activity are continuously present and do

not only emerge during demanding situations or tasks.
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1 | INTRODUCTION

Consuming alcohol is part of many human's social lives.1 Aside

from desirable effects, it is associated with various health risks and

socioeconomic costs, and a considerable number of individuals develop

an alcohol use disorder (AUD) with continued use.2,3 AUD, but

also social drinking, can result in heavy drinking episodes

(“binge drinking”4) that may cause significant harm to a person's well-

being and functioning in the short term as well as the long term.5 Hence,

we need to better understand how acute high-dose alcohol intoxication,
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as occurring during binge drinking, affects our behavior and cognition6

by modulating neural processing in the central nervous system.7

Acute alcohol intoxication has repeatedly been shown to alter

and/or impair different cognitive processes like attention and executive

functions (including inhibition),8–11 but experimental studies on high-

dose intoxications are still comparatively rare.12 Although the

neuropharmacological effects of acute intoxication are rather well

understood,13–15 general changes in overall brain activity and connec-

tivity (that are not associated with specific tasks or cognitive functions)

have remained rather unclear. So far, it has never been investigated

whether and how acute alcohol intoxication alters the temporal dynam-

ics of resting electroencephalography (EEG) microstates, which reflect

information processing in circumscribed large-scale brain networks in

the absence of specific cognitive or behavioral tasks.16–21 Learning

more about alcohol-induced changes in resting network activity might

help to explain why and how alcohol intoxication gives rise to various

executive and attentional effects. The reason for this is that microstates

are considered to represent “fundamental building blocks of cogni-

tion”22 and that resting-state activity seems to strongly determine how

response-relevant information will be processed, with each of the four

archetypical microstates facilitating different associated neuropsycho-

logical processes.23,24 Hence, reduced resting-state activity in neural

networks that are functionally associated with top-down processing

(like cognitive control or attention) could provide a plausible explana-

tion as to why intoxication makes it harder to induce and maintain

behavioral control in various task contexts. This could provide a valu-

able and currently missing link between general (task-independent)

changes in overall brain activity and the multiple cognitive deficits

observed during acute intoxication. Therefore, we set out to investigate

the effects of high-dose alcohol intoxication on neural network activity

identified by means of a spatiotemporal analysis of multichannel EEG

recorded at rest. As a key benefit, this approach allows for studying

rapid shifts of intrinsically generated, context-independent activity

among distributed neural networks with milliseconds resolution.16,19,20

Consequently, it paves the way for a comprehensive understanding of

alcohol effects on neural processing by tracking how alcohol intoxica-

tion modulates the temporal dynamics of activity in large-scale brain

circuitry, thereby accounting for the widespread and complex effects of

this drug throughout the brain.21,25

Different metabolic neuroimaging methods have already revealed

widespread modulatory effects of acute alcohol intoxication on neu-

ral processing at rest in the spatial domain.7 Functional magnetic res-

onance imaging (fMRI) studies suggest that low to moderate doses of

alcohol (0.25–0.75 g/kg) increase the functional connectivity within

and between sensory processing-related networks (e.g., auditory and

visual cortices26,27). Studies using positron emission topography

(PET) show that low to moderate doses of alcohol decrease global

glucose metabolism, with relatively higher decreases in cortical

regions of the brain (e.g., visual cortex) and relatively higher

increases in several subcortical regions (e.g., amygdala, insula, and

striatum28,29). Finally, studies using PET or arterial spin labeling (ASL)

and low to high (>0.75 g/kg) doses of alcohol report relative

increases in regional cerebral blood flow in prefrontal and temporal

regions and relative decreases in the cerebellum as well as the occipital

cortex.30–32 These somewhat contradictory findings on alcohol effects

(e.g., for the visual cortex; fMRI: increased intrinsic connectivity; PET:

decreased glucose metabolism; ASL and PET: decreased blood flow)

may be linked to the distinct metabolic neuroimaging methods, as the

vasoactive effects of alcohol likely affect the coupling between the

hemodynamic response and the underlying local neural activity.33 Yet,

all of these approaches are largely restricted to the detection of

overall changes in brain activity/connectivity and thus do not allow to

investigate short-lived dynamic changes that provide information on

the distinction between bottom-up sensory processing and top-down

higher order processing.

Therefore, it might be more promising and reliable to study acute

alcohol intoxication effects on intrinsically generated neural activity in

the temporal domain by capitalizing on methods providing a more

direct measure of neural activity with higher temporal resolution.

Electrophysiological studies of alcohol effects on neural processing at

rest have a long tradition,34,35 but most of them have analyzed the

effects of alcohol intoxication on brain oscillations by means of fre-

quency analyses, demonstrating that moderate to high doses of alco-

hol increase both power (alpha,36 delta,37 theta37–39) and functional

connectivity40 of slow-wave oscillations and decrease an oscillation-

related measure of neural noise during the resting state.41 Adding to

this, the spatiotemporal EEG analysis approach applied in this study

allows to investigate how high-dose alcohol intoxication modulates

amplitude-independent and broadband temporal dynamics of neural

resting networks occurring on a milliseconds scale.

More specifically, the applied analysis approach clusters the resting

EEG signal into a limited number of scalp electrical potential topogra-

phies that remain stable for certain time periods (60–120 ms) and then

dynamically change into a different topography that remains stable

again.18 These time periods of stable topographies are referred to as

“microstates,” and transitions between microstates are thought to rep-

resent sequential coordinated activity of various distributed neural

networks.16,42 Of note, just four archetypal topographies (termed

microstates A–D43), which occur with high reproducibility across multi-

ple independent studies, explain large portions of the global variance in

the EEG data (up to 80%). The temporal dynamics of these four micro-

states (e.g., coverage = presence and transitions = communication

between networks) are known to vary across various behaviors, per-

sonality types, and neuropsychiatric disorders17 and are modulated by

psychoactive drugs.20,44–46 To interpret these findings, researchers

have sought to link these four microstates to specific underlying neural

networks, with microstates A and B being associated with bottom-up

sensory processing (microstate A: audition; microstate B: vision) and

microstates C and D with top-down processing (microstate C: auto-

nomic processing/saliency and possibly cognitive control; microstate D:

attention).16,17,22 Analyzing how alcohol modulates the temporal

dynamics of these four networks could thus help to better understand

the neurophysiological mechanisms underlying the behavioral and cog-

nitive changes brought about by this widely used and abused drug.

The current study examined the effects of an acute high-dose

alcohol intoxication on neurophysiological processing at rest in a
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counterbalanced within-subject design in men, who appear to be

more vulnerable toward developing AUD than females (based on com-

monly reported prevalence rates).2,33 In two appointments separated

by 2–7 days, we assessed 22 young healthy male participants (resting

EEG, self-reported mood, and resting-state cognition) while they were

either sober or intoxicated. By means of spatiotemporal EEG analysis,

we then tested for alcohol-induced differences in the presence

(i.e., the percentage of time a given microstate is present) and number

of transitions (i.e., the number of observed transitions from one micro-

state to another; for details, please see Section 2.5) between the four

microstates. Given previous reports of intensified processing in

sensory processing-related networks after alcohol intoxication,26,27

we hypothesized that alcohol increases the presence of bottom-up

sensory processing-related microstates A and B as well as

transitions toward and between these networks. Furthermore, recent

evidence suggests that alcohol impairs top-down control-related

processing, such as interoceptive-autonomic processing,47 task-

relevant processing of proprioceptive information,48 and performance

monitoring.49,50 Therefore, we hypothesized that acute alcohol intoxi-

cation decreases the presence of microstates C and D, which are com-

monly assumed to be functionally related to control, as well as

transitions toward and between these networks. We further expected

that alcohol decreases self-reported somatic awareness (for details,

see Section 2). Finally, we tested whether alcohol-induced differences

observed in microstate characteristics remained significant when

controlling for potential alcohol-induced mood changes.

2 | MATERIALS AND METHODS

2.1 | Participants

We used G*power software51,52 to determine the required sample size.

We conducted an a priori required sample size estimation for repeated-

measures ANOVA within-factor effects. Using eight repeated measures

(two alcohol states × four microstates), an alpha error probability of 5%,

a power of 95%, and the suggested standard medium effect size

f = 0.25 yielded a required sample size of n = 23, which we then

increased to n = 24 in order to be able to properly balance appointment

order. Hence, we recruited n = 24 young healthy males at the local uni-

versity (TU Dresden) using flyers and online advertisements. All partici-

pants underwent a telephone screening for the following: Inclusion

criteria were male sex, age 18–30 years, and moderate/non-risky drink-

ing habits, as defined by 1–12 binge-drinking incidents (more than eight

standard units of alcohol in one evening) per year and 1–15 points in

the Alcohol Use Disorder Identification Test (AUDIT).53 Exclusion

criteria were female sex (females had not been approved by the ethics

committee), any history of addiction and/or drinking habits that did not

match the inclusion criteria, any current somatic, neurologic, or psychi-

atric disorder, current intake of medication, and recollections of previ-

ous aggressive episodes under the influence of alcohol. Participants

signed informed consent before the start of each study appointment

and were reimbursed with 10€ per hour. The study was approved by

the local ethics committee (EK293082014) and conducted in accor-

dance with the Declaration of Helsinki. Of note, the majority of partici-

pants included in this study also contributed to the samples of other

publications from authors of this paper.41,54,55

2.2 | Procedure

We used a counterbalanced within-subject study design, where each

participant was assessed once sober and once intoxicated (for details

on alcohol administration, please refer to previous studies41 and/or

the supplementary material). The minimum time span in between the

two appointments was 2 days, and the maximum time span between

the two appointments was 7 days.

Resting-state EEG was recorded for 5 min at each appointment.

There were five alternating periods of eyes closed (40 s) and eyes

open (20 s), which were instructed by the auditory commands “Augen
auf” and “Augen zu,” which translate to “close eyes” and “open eyes.”
The rationale for using this protocol20,56–58 is that these alternations

minimize fluctuations in participants' vigilance state, as participants

may already become drowsy after 3 min of recording resting-state

brain activity.59

Immediately after the resting-state recording of each appoint-

ment, participants were asked to fill in the Amsterdam Resting-State

Questionnaire (ARSQ60) and Positive and Negative Affect Schedule

(PANAS61,62). After that, breath alcohol (BrAC) levels were assessed.

2.3 | EEG recording

EEG was recorded from 60 Ag–AgCl electrodes at standard equidistant

scalp positions, with Fpz as reference electrode. Electrode impedances

were kept below 5 kΩ. The data were recorded with a QuickAmp

amplifier (Brain Products, Inc.) using a sampling rate of 500 Hz.

2.4 | EEG preprocessing

EEG preprocessing was performed using the BrainVision Analyzer

(Version 2.0.1.327; Brain Products GmbH, Munich). In line with previ-

ous research,20,56–58 we analyzed eyes-closed periods during which

the influence of external visual stimulus processing and eye blinks is

minimized.63,64 First, we band-pass filtered the data between 2 and

20 Hz and re-derived data to average reference. We then replaced

heavily corrupted channels by using a linear interpolation of adjacent

electrodes, before correcting for eye movements using a semiauto-

matic independent component analysis (ICA)-based correction pro-

cess. After removing these components, we screened channels a

second time and interpolated additional channels, if necessary. We

then performed automatic artifact rejection (maximum amplitude:

+/−100 μV) and manually eliminated residual artifacts based on the

ratings of two independent raters. Finally, we segmented all artifact-

free data into 2-s epochs for further analyses (sober: mean 181.36 s;
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standard deviation [SD] 15.19 s; range from 138 to 194 s; intoxicated:

mean 178.18 s; SD 17.05 s; range from 112 to 193 s).

2.5 | EEG microstate analysis

Microstate analysis was conducted using the microstate plugin65 for

the Matlab toolbox EEGLAB.66 Following standard procedures,42,67,68

we submitted maps at the momentary peaks of the Global Field

Power (GFP) of each individual (i.e., maximum voltage values at all

electrodes at that time point that represent time points of optimal

signal-to-noise ratio) to a modified spatial cluster analysis using the

atomize–agglomerate hierarchical clustering (AAHC69,70) methods.

Doing so, we could identify the four most dominant cluster maps that

represent the four archetypal EEG resting networks in every single

participant. To allow for comparison of the grand mean topographies of

the four archetypal microstate maps between conditions, we performed

the AAHC method for the intoxicated condition, for the sober

condition, and across both conditions. We then submitted individual

cluster maps to a second cluster analysis, yielding separate grand mean

maps for participants under intoxicated, sober, and both conditions.

Next, these grand mean maps were sorted according to the standard

labeling (microstate A: left–right orientation; microstate B: right–left

orientation; microstate C: anterior–posterior orientation; microstate D:

fronto-central maximum; see ref.16). To obtain each individual's

microstates characteristics for our statistical analyses, we sorted the

individual maps that we had previously identified across conditions.

This was done separately for both conditions (i.e., intoxicated and

sober) on the basis of spatial correlations using the templates identified

in the literature.43 We then assigned the GFP peaks of individual EEG

data to the best fitting individually identified cluster maps. We linearly

interpolated this assignment to the time periods between the GFP

peaks in order to obtain a continuous temporal stream of microstates

occurring in each individual and condition. From this last step, we

extracted four microstate characteristics in each condition: (1) the total

percentage of time during which a given microstate is dominant,

representing the total presence of the underlying network (coverage);

(2) the mean microstate duration, representing an index of the temporal

stability of the underlying resting network (duration); (3) the mean fre-

quency of occurrence for each microstate independent of its individual

duration, representing an index of relative usage of the underlying rest-

ing network (occurrence); and (4) the number of observed transitions

normalized for the overall count of transitions (i.e., more transitions

than expected from the number of occurrence of each microstate,

given in Δ%) from one microstate to any other microstate, which reveal

sequential activation of underlying neural networks (transitions).

2.6 | Statistical analysis

To compare topographies of microstate maps between conditions,

we used a randomization test (topographic analysis of variance

[TANOVA]71,72). This test uses nonparametric randomization statistics

to compare the topographical maps across conditions. For this, the

global dissimilarity (i.e., configuration differences) between electrical

field maps is computed. As this variable represents a single measure of

difference, nonparametric randomization tests are used to assess

statistical significance. For further details on this procedure, please refer

to Murray et al.73 First, we compared microstate coverages across con-

ditions with a repeated-measures ANOVA using IBM SPSS Statistics

software (IBM Corp., NY, USA) and the within-subject factors

“condition” (sober vs. intoxicated) and “microstate class” (A vs. B vs. C

vs. D). To further clarify the origin of significant differences in

microstate coverage, we ran analogous analyses for the occurrence and

duration of the four microstates (as coverage = duration × occurrence).

Finally, we compared microstate transitions (transitions between

microstate classes, e.g., for Class C: C à A, C à B, C à D, A à C,

B à C, D à C) across conditions using a comparable ANOVA. In the

case of significant interactions, we conducted separate post hoc

ANOVAs comparing single microstate characteristics across conditions.

Given that the order of both appointments was balanced across the

sample and we had no hypothesis as to why resting-state activity

(other than some cognitive tasks) should systematically differ between

those orders, we did not include “order” as a between-subject factor in

any of the analyses (in that context, please note that including “order”
in exploratory add-on analyses not reported here did not change the

reported ANOVA findings with respect to the reported significances).

Finally, we analyzed changes in self-report measures across conditions.

First, we analyzed changes in positive and negative mood (as measured

by the PANAS) in separate repeated-measures ANOVAs using

“condition” as a within-subject factor. We also repeated all ANOVAs

with microstate characteristics as dependent variables, adding changes

in positive and negative mood as covariates. Second, we analyzed

changes in resting-state cognition (as measured by the ARSQ) using

“condition” and “scale” (10 ARSQ scales) as within-subject factors in

the ANOVA and conducted an exploratory post hoc ANOVA regarding

changes in the ARSQ scale “somatic awareness.” Third, we calculated

Pearson correlations to investigate associations between intoxication-

induced changes in “somatic awareness” and alcohol-associated

changes in microstate characteristics.

In all analyses, Greenhouse–Geisser correction was applied when-

ever necessary. Post hoc tests did not undergo Bonferroni correction.

All results are reported as mean value, SD, and range. In the main

manuscript, we only report significant effects (P < .050, two-sided)

involving the factor “condition,” as our main question was how alco-

hol modulates microstate parameters (for significant effects involving

the factor “microstate class”/“microstate class transition,” please see

supplementary material).

3 | RESULTS

3.1 | Sample characteristics

Before data analyses, we excluded n = 2 participants from the sample,

as it was unclear which questionnaire had been filled out in which
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condition for one participant, and another participant reported current

psychological distress (we had set the BSI-18 sum score cutoff value

to 13 [mean + 1 SD based on Spitzer et al.74] and he had a sum score

of 20). Yet, please note that including these participants into the

microstate analyses would not have changed the reported ANOVA

findings with respect to the reported significances.

The remaining n = 22 participants were on average 23.9 years old

(SD 3.0; range from 19 to 29 years), were 181.5 cm tall (SD 7.6; range

from 164 to 194 cm), and weighed 74.5 kg (SD 13.9; range from 52.5

to 119 kg). Based on this, they received on average 276.5 mL vodka

(40 vol %) (SD 30.6; range from 220 to 363 mL), which resulted in an

average BrAC of 1.1‰ (SD 0.2; range from 0.5 to 1.5‰) at the time

that the resting-state EEG was recorded and the questionnaires were

filled out. n = 10 were sober on their first appointment and intoxi-

cated on their second appointment, whereas the other n = 12 were

intoxicated on their first appointment and sober on their second

appointment. Lastly, the average AUDIT score in the sample was 7.5

(SD 3.0; range from 3 to 14).

3.2 | The four archetypal microstates

Applying the AAHC clustering algorithm, we could identify the four

archetypal microstate topographies A–D (see Figure 1). In a first step,

we used a TANOVA to test whether the topographies of these maps

differed between the intoxicated and sober condition. We found no

differences (microstate A: P = 0.095; microstate B: P = 0.055; micro-

state C: P = 0.944; microstate D: P = 0.349), which provides the ratio-

nale for comparing microstate characteristics between conditions

based on the maps identified across both treatments. On average,

these four maps explained 71.86% of the data's variance in the intoxi-

cated condition (SD 4.22%; range from 61% to 78%) and 73.93% of

the data's variance in the sober condition (SD 3.58%; range from 67%

to 79%). Of note, the explained variance did not differ across condi-

tions, as evidenced by a repeated-measures ANOVA (F1,21 = 3.71;

P = 0.068; η2p =0.150).

3.3 | Temporal dynamics of resting networks in
the intoxicated versus sober condition

The repeated-measures ANOVA of the coverage measure revealed a

significant interaction of condition and microstate class (F3,63 = 5.06;

P = 0.003; η2p =0.194). Separate post hoc ANOVAs for each micro-

state showed that compared with the sober condition, microstate B

increased during intoxication (F1,21= 5.50; P=0.029; η2p =0.207; sober:

22.78% ± 5.22, intoxicated: 25.01% ± 4.04) and microstate C

decreased during intoxication (F1,21=17.06; P < 0.001; η2p =0.448;

sober: 29.78% ± 6.08, intoxicated: 26.00% ± 5.40; see Figure 2A).

Microstates A and D showed no such condition differences

(all F ≤ 1.60, P ≥ 0.220). In order to further clarify the origin of these

differences in microstates B and C, we ran analogous analyses for the

occurrence and duration of the four microstates, which determine a

given microstate's coverage (coverage= duration×occurrence).

The repeated-measures ANOVA of the duration measure revealed

a significant interaction of condition and microstate class (F3,63 = 4.20;

P = 0.009; η2p =0.167). Separate post hoc ANOVAs for each microstate

showed that compared with the sober condition, the duration of

microstate C decreased during intoxication (F1,21=5.49; P= 0.029; η2p
= .207; sober: 46.2 ± 13.5 ms, intoxicated: 41.9 ± 11.9 ms; see

Figure 2B). Microstates A, B, and D showed no such condition

differences (all Fs ≤ 0.57, P ≥ 0.459). Given that not all of the

included variables were normally distributed, as indicated by a

Kolmogorov–Smirnov tests, we ran an additional nonparametric

(Wilcoxon signed-rank) test, which confirmed the significantly decreased

duration of microstate C during intoxication (Z=−2.22, P=0.026).

F IGURE 1 Microstate maps. Topographies of
the four archetypal microstates A–D identified in
the intoxicated condition (bottom row), in the
sober condition (second row), and across both
conditions (top row). Head seen from above, nose
up, left ear left, red and blue are color labels
chosen arbitrarily for areas of opposite polarity. As
there were no topographical differences between
the topographies of the intoxicated and sober
condition (all Ps ≥ 0.055), we used the
topographies identified across both conditions for
the fitting and identification of each individual's
microstate characteristics
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The repeated-measures ANOVA of the occurrence measure rev-

ealed a significant interaction of condition and microstate class

(F3,63 = 3.57; P = 0.019; η2p =0.145). However, none of the intoxica-

tion effects survived post hoc testing, as separate post hoc ANOVAs

for each microstate showed no significant differences between the

sober and intoxicated condition for any of the four microstates

(all Fs ≤ 3.08, P ≥ 0.094; see Figure 2C). In sum, the reduced coverage

of microstate C observed during intoxication seemed to be largely

driven by a shorter duration, and not by a less frequent occurrence of

this microstate. But even though the decrease in microstate C

coverage co-occurred with an increased coverage of microstate B, no

differences in duration or occurrence were observed between

conditions with regard to this microstate.

Finally, we tested whether the above-reported intoxication-

induced changes in the coverages of microstates B and C also led to

changes in transitions from or toward these microstates. The

F IGURE 2 Boxplots (lower end of the whisker: 2.5% percentile; lower horizontal end of the box = 25% percentile; middle horizontal
line = median; upper horizontal end of the box = 75% percentile; upper end of the whisker: 97.5% percentile) depicting differences in the
temporal dynamics of microstates, that is, resting networks between conditions (sober = gray color; intoxicated = black color). Asterisks indicate
significant differences between conditions (P < 0.050). (A) Differences in coverage in % of the signal. Microstate B covered significantly more
time in the intoxicated condition (P = 0.029), whereas microstate C covered significantly less time in the intoxicated condition (P < 0.001)
(interaction effect “microstate class X condition,” P = 0.007). (B) Differences in mean duration in milliseconds (ms). The mean duration of
microstate C was significantly shorter in the intoxicated condition (P = 0.029; interaction effect “microstate class X condition,” P = 0.014).
(C) Differences in mean occurrence in times per second. There were no significant differences between the conditions (all P > 0.094).

(D) Differences in transitions in Δ% (observed − expected; see Section 2). There were significantly more transitions from microstate C to
microstate B and significantly less bilateral transitions between microstates C and D in the intoxicated condition (microstate C à B: P = 0.0430,
microstate C à D: P = .0490, microstate D à C: P = 0.003) (interaction effect of “microstate class transition X condition,” P = 0.004)
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repeated-measures ANOVA of microstate transitions involving those

from and toward microstates B and C (10 transitions in total) revealed

a significant interaction of condition and microstate transition class

(F4.60,96.62 = 3.55; P = 0.007; η2p =0.145). Separate post hoc ANOVAs

comparing the sober and intoxicated condition for each microstate

transition showed that alcohol intoxication increased transitions from

microstate C to microstate B (F1,21=4.64; P=0.043; η2p =0.181; sober:

−0.32%±0.66%, intoxicated: −0.02%±0.48%) and decreased

transitions from microstate C to microstate D (F1,21= 4.39; P=0.049;

η2p =0.173; sober: 0.41 ±0.77%, intoxicated: 0.00%±0.61%) and from

microstate D to microstate C (F1,21=11.41; P=0.003; η2p =0.352;

sober: 0.58%±0.78%, intoxicated: 0.09%±0.60%; see Figure 2D). All

other transitions showed no significant condition effect (all Fs ≤ 4.15,

P≥0.054). In sum, alcohol intoxication mainly changed transitions

from and toward microstate C, decreasing bidirectional transitions

with microstate D and increasing transitions from microstate C to

microstate B.

3.4 | Self-report measures across the intoxicated
and sober treatments

In a final set of analyses, we investigated potential associations

between the intoxication-induced neurophysiological changes and

psychological processes by testing for treatment differences in self-

report measures on mood and resting-state cognition.

First, we analyzed changes in participants' mood (as measured

by the PANAS). Repeated-measures ANOVAs showed that alcohol

intoxication did neither change positive (sober: 3.55 ± 0.67; intoxi-

cated: 3.40 ± 0.63; F1,21 = 1.54; P = 0.229) nor negative affect

(sober: 1.60 ± 0.40; intoxicated: 1.77 ± 0.60; F1,21 = 3.35; P = 0.082).

Furthermore, we added difference scores in both positive and nega-

tive affect (pre–post) as covariates in the above-reported analyses.

We found that alcohol effects regarding the coverages of micro-

states B and C, transitions between microstates C and D, and

transitions from microstate C to microstate B remained significant

(all Fs > 6.12, all P < 0.023), whereas the effect regarding the dura-

tion of microstate C was no longer significant (F1,19 = 2.75;

P = 0.114). In other words, apart from the intoxication-induced

decrease in microstate C's duration, the observed differences in

neurophysiological processing across conditions remained significant

when controlling for changes in participants' mood.

Finally, we analyzed changes in participants' resting-state cogni-

tion (as measured by the ARSQ). A repeated-measures ANOVA

involving the within-subject factors “ASRQ scale” and “condition”
revealed no significant interaction of scale and condition

(F5.18,108.93 = 1.77; P = 0.122; η2p 0 = 0.078). Given the known associa-

tion of microstate C's coverage and experienced somatic awareness,75

we nevertheless conducted an exploratory post hoc ANOVA for the

ARSQ scale “somatic awareness.” This ANOVA revealed a significant

difference across conditions (no other scale showed a significant con-

dition effect, all P>0.059) with alcohol intoxication decreasing

somatic awareness (2.72 ± 0.68) compared with the sober condition

(3.24±0.98; F1,21=7.96, P=0.010, η2p =0.275). Participants with larger

decreases in somatic awareness under intoxication showed larger

increases of transitions from microstate C to microstate B

(r20= −0.458, P=0.032; associations of all other intoxication-induced

neurophysiological and somatic awareness changes: P> 0.064). Thus,

there was some evidence that intoxication-induced changes in micro-

state transitions were associated with changes in somatic awareness

during the resting-state measurement.

4 | DISCUSSION

The present study investigates the effects of acute alcohol intoxica-

tion on the temporal dynamics of EEG resting networks to advance

our understanding of which general changes in neuronal activity might

underlie the widespread effects of alcohol onto cognitive processing

and neuropsychological functioning. In short, we found that alcohol

intoxication decreased the presence of the autonomic processing- and

control-related microstate C in favor of the visual processing-related

microstate B. Moreover, it decreased bidirectional transitions/commu-

nication between microstate C and the attention-related microstate D

in favor of transitions/communication from microstate C to B. These

neurophysiological effects remained significant when controlling for

(nonsignificant) changes in self-reported participants' mood,

suggesting that the alcohol-induced neurophysiological changes are

most likely not due to changes in mood. Furthermore, participants

reported decreased somatic awareness when intoxicated, which was

associated with some of the observed neurophysiological changes.

Together, these findings suggest that acute alcohol intoxication might

hamper cognitive processing by promoting a bottom-up sensory

processing-related network at the expense of networks associated

with top-down control-related processing (i.e., by increasing the for-

mer and dampening the latter).

Our analyses revealed several alcohol-induced changes in

the temporal characteristics of EEG resting networks. With respect to

the presence of these networks, we had initially hypothesized that

the bottom-up sensory processing-related microstates A and B should

be increased, whereas the top-down control-related microstates C

and D might be decreased. Indeed, and in line with previous reports

of intensified processing in sensory processing-related networks

during alcohol intoxication,26,27 we found an increased presence of

visual processing-related microstate B. We could, however, not find

evidence of an increased presence of auditory processing-related

microstate A. This dissociation is interesting against the background

that visual processing of alcohol-related images can impair concurrent

auditory processing in individuals with AUD, potentially because alco-

hol intoxication increases the dominance of the visual modality.76

Importantly, the alcohol-induced promotion of vision-related sensory

processing seems to have happened largely at the expense of auto-

nomic information processing during microstate C, the coverage of

which was significantly reduced during intoxication. Further analyses

revealed that alcohol reduced the coverage of microstate C mostly by

decreasing its duration, but much less so its occurrence, suggesting
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that autonomic processing did not become rarer, but shorter during

alcohol intoxication. This means that a neuronal network, which has

repeatedly been associated with higher order processing of internal

information and possibly with cognitive control,22 is significantly less

activated during alcohol intoxication. Given that resting-state activity

seems to strongly determine how response-relevant information is

processed,23,24 the reduced duration of microstate C might help to

explain why alcohol intoxication seems to make it harder to stably

maintain cognitive control when needed (even though this phenome-

non needs to be further investigated in order to underpin our inter-

pretation). Moreover, we observed that alcohol increased transitions

from microstate C to microstate B, but decreased bidirectional transi-

tions between microstate C and another, attention-related microstate

(microstate D). This change of microstate transitions is in line with our

hypotheses stating that alcohol promotes bottom-up sensory

processing at the expense of top-down control-related processing in

microstates C and D. Although the reduction in microstate D failed to

reach significance, the significantly reduced transitions from C to D

suggest that there might potentially also be some, albeit smaller,

reduction in the attention-related microstate D. Interestingly, this

finding might also offer a different perspective on the so-called alco-

hol myopia,77–79 which describes neuropsychological changes during

intoxication that have commonly been interpreted as a narrowed

attentional focus.79,80 Yet, we found more prominent changes in the

visual processing-related microstate B than in the attention-related

microstate D (as one would expect in case of compromised attention).

This suggests that phenomena like alcohol myopia might be largely

driven by an increase in bottom-up sensory processing, rather than by

changes in attention networks, and that those two networks are not

necessarily strongly interdependent. In other words, behavioral phe-

nomena commonly interpreted as indicators of altered attention might

actually be caused by an imbalance in network activation, which

favors bottom-up over top-down information processing.

Together, the reported alcohol-induced changes on the temporal

dynamics of microstates B and C suggest that in the resting state,

acute alcohol intoxication prioritizes the activation of networks

associated with bottom-up sensory processing over the activation of

networks associated with the processing of internal stimuli and cogni-

tive control. To obtain further evidence corroborating this conjecture,

we analyzed alcohol effects on self-reported resting-state cognition

as measured by the ARSQ.60 As microstate C has previously been

shown to be associated with experienced somatic awareness,75 we

further explored alcohol effects on this scale despite the nonsignifi-

cant effects in the overall analyses of resting-state cognition. In line

with our hypothesis that alcohol decreases self-reported somatic

awareness, we found that somatic awareness was decreased during

intoxication and that this decrease was positively correlated with

alcohol-induced increases of transitions from microstate C to micro-

state B. Thus, intoxication-induced changes in microstate transitions

might potentially be associated with changes in participants' somatic

awareness during the resting-state measurement.

Despite the use of a counterbalanced within-subject design

including acute high-dose alcohol intoxication in combination a

spatiotemporal EEG analysis approach, the present study also has

limitations. While the within-subject design increases statistical

power and lowers the risk that confounding variables might drive

treatment differences, the counterbalancing of appointment order

and associated effects might have introduced noise into the data

(which should however be negligible, as we analyzed resting-state

data, not task performance data). Also, it was somewhat difficult to

generate a priori hypotheses on all of the analyzed networks' tem-

poral characteristics (e.g., transitions) due to the lack of comparable

studies in the field. Future studies will be required to reproduce our

study's findings and test whether the reported neurophysiological

changes apply to female participants as well. Finally, though the

analysis of resting EEG microstates holds the potential to reveals

unique insights into the fundamental building blocks of human cog-

nition, more research is needed to underpin the assumed link of

these states to specific underlying networks and neuropsychological

processes.16

In summary, the present study investigated general (i.e., task-

independent) alcohol intoxication effects on the temporal dynamics of

large-scale brain circuits using a spatiotemporal EEG analysis

approach. This revealed that alcohol intoxication alters fundamental

neuropsychological processing even when there is no task at hand.

Overall, we found that alcohol intoxication reduced the presence of

an autonomic processing- and potentially control-related network

(= microstate C) as well as that network's bilateral transitions toward

and from an attention-related one (= microstate D), ultimately benefit-

ing both the presence of and the transitions toward a visual

processing-related network (= microstate B). These findings suggest

that alcohol prioritizes networks associated with the bottom-up

processing of sensory (visual) stimuli over those associated with top-

down processing of internal stimuli during the resting state, thereby

potentially contributing to the cognitive (control and attention) defi-

cits commonly observed during alcohol intoxication. To further cor-

roborate this assumption, future follow-up research could analyze

(and relate) the effects of acute alcohol intoxication on both task-

independent and task-dependent neural processing.58,81 Doing so

would further deepen our understanding of the neuropsychological

mechanisms underlying the cognitive and behavioral effects of

alcohol.
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