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Abstract 

Self-control–the ability to inhibit inappropriate impulses–predicts economic, physical, 

and psychological well-being. However, recent findings demonstrate low correlations 

among self-control measures, raising the questions what self-control actually is. Here, we 

examine the idea that people high in self-control show more stable mental processing, 

characterized by fewer, but longer lasting processing steps due to fewer interruptions by 

distracting impulses. To test this hypothesis, we relied on resting EEG microstate 

analysis, a method that provides access to the stream of mental processing by assessing 

the sequential activation of neural networks. Across two samples (N1=58 male adults 

from Germany; N2=101 adults from Canada [58 females]), the temporal stability of 

resting networks (i.e., longer durations and fewer occurrences) was positively associated 

with self-reported self-control and a neural index of inhibitory control, and negatively 

associated with risk-taking behavior. These findings suggest that stable mental processing 

represents a core feature of a self-controlled mind. 

Keywords: self-control, EEG, microstates, neural networks, resting-state, response 

inhibition, risk-taking  
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Statement of Relevance 

Self-control enables us to regulate our behavior in order to achieve long-term goals. 

Indeed, scientists have found that people with high self-control live happier and healthier 

lives. Yet, the differences between a self-controlled and an impulsive mind have 

remained unclear. Here, we analyze the relationship between self-report, neural, and 

behavioral measures of self-control and brain activity when a person’s mind is free to 

wander and no task is at hand. We demonstrate that self-controlled individuals show 

fewer, but longer lasting mental processing steps. These results suggest that people with 

high self-control have more stable mental processes with fewer interrupting thoughts and 

impulses. Our findings illustrate that analyzing the mental flow of the "resting" brain can 

reveal crucial information on the nature of our minds. In the future, assessing individual 

differences in the stability of mental processing could be helpful in understanding and 

treating disorders associated with deficient self-control.  
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Self-control is a fundamental trait that relates to the regulation of behavior and has been 

originally defined as the ability to inhibit impulses in order to achieve long-term goals 

(Inzlicht et al., 2021). Research has confirmed the adaptive nature of self-control, 

demonstrating that self-controlled individuals show increased economic, physical, and 

psychological well-being (De Ridder et al., 2012; Tangney et al., 2004). However, recent 

findings cast doubt on the validity of both the leading theoretical model of self-control 

(i.e., the strength model; Vohs et al., 2021) and distinct self-control measures (e.g., 

Wennerhold et al., 2020). Furthermore, by conceptually focusing on the role of inhibitory 

processes, research might have neglected other aspects of self-control (e.g., proactively 

avoiding temptations, or using cognitive reconstruals to alter the experience of 

temptations; see also Discussion, second paragraph, and Fujita, 2011; Inzlicht et al., 

2021). These issues raise questions about how well we have actually understood the 

construct of self-control. Based on overlooked theoretical models and empirical findings, 

which suggest that self-controlled individuals are less prone to distracting impulses, we 

hypothesize that self-control is associated with a less distracted mind, characterized by 

more stable and longer lasting mental processing steps. To test this hypothesis, we rely on 

microstate analysis of resting-state electroencephalography (EEG; Bréchet et al., 2020; da 

Cruz et al., 2020; Nagabhushan Kalburgi et al., 2020). This analysis provides access to 

the stream of mental processing by assessing the sequential activation of (usually) four 

large-scale brain networks at a millisecond resolution (for a review, see Michel & 

Koenig, 2018). We speculate that the temporal stability (i.e., longer durations and fewer 

occurrences) across the four network types indicates an individual’s general mental 
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processing stability. In order to investigate mental processing free of context, we focus on 

analyzing task-independent brain networks. 

The strength model holds that self-control is a domain-general resource with a 

limited capacity that varies in individual strength, and that high self-control demands lead 

to depletion of this resource, as indicated by performance decreases during consecutive 

tasks (Baumeister et al., 2007). However, recent meta-analyses have shown that this 

depletion effect is much smaller than previously thought (e.g., Vohs et al., 2021), leaving 

a gap within self-control theory. If self-control is not a limited resource, what is it then? 

To answer this question, it could help to look at how researchers have measured this 

construct. Self-report measures like the Brief Self-Control Scale (BSCS) capture 

cognitively available aspects of self-control by having participants respond to items like 

“I am good at resisting temptation” (Tangney et al., 2004). Incentivized risk tasks, like 

the Balloon Analogue Risk Task (BART; Lejuez et al., 2002), indirectly assess self-

control by having participants choose between smaller, but secure, and larger, but 

insecure monetary gains. Finally, researchers have analyzed inhibitory control related 

brain activity during both task-independent and task-dependent processing, arguing that 

neural measures may provide the most direct indices of self-control. An example is the 

baseline activation in inhibitory control-related brain regions (Schiller et al., 2014) and 

the NoGo-P300 amplitude, a task-dependent, neural index of inhibitory control, 

registered while participants are inhibiting pre-potent motor responses (Nash et al., 2013). 

In sum, while existing self-report, behavioral and neural measures of self-control choose 

different routes to access the construct, they share the assumption that self-control relates 

to inhibitory capacity. Yet, associations among these measures are commonly weak to 
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absent (Wennerhold et al., 2020). The ongoing confusion about the “right” way to 

measure self-control emphasizes the need to reconceptualize the construct by identifying 

other core features of self-control across measures. 

Here, we argue that a core feature of self-control is stable mental processing 

characterized by fewer, but longer lasting mental processing steps due to fewer 

interruptions by distracting impulses. This hypothesis is based on three main pieces of 

suggestive theoretical and empirical evidence. First, different measures of self-control 

share the notion that a self-controlled mind is able to shield against mental 

“interruptions” like distracting events or impulsive urges in order to maintain a stable, 

higher-order goal (Schiffer et al., 2015). For example, scoring high on the item 

“Sometimes I can’t stop myself from doing something, even if I know it is wrong” will 

result in a lower score in the BSCS (Tangney et al., 2004). In line with this notion, the 

Continuous Performance Test (CPT) measures the ability to quickly respond to specific 

stimuli while neglecting distracting ones (Fallgatter et al., 1997). Moreover, in 

incentivized risk tasks participants have to resist the impulse to obtain potential 

immediate high-gain rewards in order to maximize their long-term profit (Lejuez et al., 

2002). Second, research on Attention Deficit Hyperactivity Disorder (ADHD), a mental 

disorder associated with deficient self-control, suggests that an “uncontrolled mind” is 

reflected by unstable mental processing prone to interruption by distracting impulses 

(Castellanos et al., 2006). Specifically, the inability to distinguish between relevant and 

irrelevant information is assumed to lead to increased vulnerability for insignificant 

information to intrude into the current mental process (Fassbender et al., 2009). These 

deficiencies impair performance in objective self-control measures, as evident by more 
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errors and more variable response times in the CPT (Epstein et al., 2003), and more 

impulsive decision-making in the BART (Humphreys & Lee, 2011). Third, it has been 

observed that self-control is negatively associated with mind-wandering (r=-.49, p<.001), 

a mental processing style characterized by many interruptions of mental processing and 

consequently shorter processing steps (Deng et al., 2019). In sum, a broad array of 

research supports the theoretical assumption that a core feature of self-control is stable 

mental processing. But how can we actually gain access to an individual’s mental 

processing style to test this hypothesis?  

An ideal tool to identify mental processing steps on a millisecond scale is EEG 

microstate analysis (Michel & Koenig, 2018). Microstate analysis uses clustering of 

electrophysiological data to obtain a sequential activation of large-scale brain networks 

and quantify their temporal characteristics (e.g., average duration, average occurrences 

per second). This approach is consistent with the notion that self-control is associated 

with the activation of whole brain neural networks (Schiller & Delgado, 2010). 

Microstates arise due to simultaneous activation of specific neuronal assemblies and thus 

reflect temporarily stable episodes of coherent mental activity (Michel & Koenig, 2018). 

Based on the idea that microstates represent the individual units that constitute the stream 

of mental processing, each microstate may be described as a distinct mental processing 

step. In the resting brain, microstates remain stable for approximately 40-120ms before 

quickly changing into other networks (Lehmann et al., 1987). Further illustrating their 

fundamental character, four prototypical types of microstate networks (A-D) account for 

approximately 80% of the variance in resting EEG recordings of almost every single 

individual (Michel & Koenig, 2018). Importantly, the average duration of microstate 
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networks in milliseconds and their average number of occurrences per second are highly 

correlated across microstate types (duration: r=.79; occurrence: r=.51; Khanna et al., 

2014). This suggests that individuals have a general tendency for more (fewer, but longer 

lasting microstates) or less (more, but shorter lasting microstates) stable mental 

processing at rest (beyond associations of specific microstates’ stability with different 

levels of consciousness, neuropsychiatric conditions, and cognitive contents; for a 

review, see Michel & Koenig, 2018). 

Here, we investigated the hypothesis that self-report, neural and behavioral 

measures of self-control show associations with stable mental processing, although these 

measures may not correlate with each other (Wennerhold et al., 2020). In Study 1, we 

first tested for associations of stable mental processing with self-reported self-control 

(BSCS; Tangney et al., 2004) in 58 healthy men. Second, we tested for associations with 

a neural index of inhibitory control (the NoGo-P300 in the CPT (Fallgatter et al., 1997). 

Third, we localized neural sources of inhibitory control and investigate if stable mental 

processing is associated with cortical activity in these sources (using sLORETA; Pascual-

Marqui, 2002). In Study 2, we carried out the same analysis plan as in Study 1 

(preregistered at https://osf.io/sajxv/?view_only=58ead0c0dcc04508866e97fe0f795ab1), 

in order to replicate associations of self-control and stable mental processing in an 

already collected sample of N=101 participants (58 females). As a conceptual extension, 

we tested the hypothesis that stable mental processing is negatively associated with risk-

taking behavior (BART; Lejuez et al., 2002). 

Results (Study 1) 

Descriptive Analyses 
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As expected, we found considerable heterogeneity of self-control across different 

measurement domains. Self-reported self-control as measured with the BSCS amounted 

to an average of 37.60 points (SD=6.90; range: 19-51) and the neural index of inhibitory 

control as measured by the average amplitude of the P300 during response inhibition 

amounted to an average of 5.73 µV (SD=2.23; range: 1.78-12.64). Self-reported self-

control was not significantly associated with the neural index of inhibitory control 

(r=.11, 95% CI [-.16, .35], p=.431). 

On average, there were 158.88 seconds of artefact-free resting-state EEG data 

available for microstate analyses (SD=31.39; range: 54.10-219.00). In close accordance 

with previous findings, the four prototypical microstate types accounted for an average of 

77.87% of EEG signals (SD=3.26; range: 70.40-84.20). See Fig. 1 for grand-mean 

microstate maps and exemplary sequences of microstates for individuals with stable and 

unstable mental processing (see Table S1 in the supplemental materials for descriptive 

statistics of study 1). Supporting the assumption that people display a general tendency 

for more or less stable mental processing, durations (A*B: r=.58, 95% CI [.38, .73], 

p<.001; A*C: r=.59, 95% CI [.40, .74], p<.001; A*D: r=.60, 95% CI [.40, .74], p<.001; 

B*C: r=.64, 95% CI [.45, .77], p<.001; B*D: r=.59, 95% CI [.40, .74], p<.001; C*D: 

r=.58, 95% CI [.37, .73], p<.001) and occurrences (A*B: r=.59, 95% CI [.40, .74], 

p<.001; A*C: r=.39, 95% CI [.14, .59], p=.003; A*D: r=.39, 95% CI [.15, .59], p=.002; 

B*C: r=.57, 95% CI [.36, .72], p<.001; B*D: r=.45, 95% CI [.21, .63], p<.001; C*D: 

r=.54, 95% CI [.32, .70], p<.001) of all four microstate types showed considerable 

positive correlations. This confirms that the temporal stability of one microstate network 

naturally goes along with the temporal stability of all other microstate networks. 
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Adding a random intercept across participants to a model of microstate duration 

increased the model-fit (p<.001), confirming the need for linear mixed model analyses. 

Correspondingly, a high intra class correlation (ICC=.600) indicated that durations of the 

four microstate types were correlated, which again means that people tend to have higher 

or lower durations of microstates across microstate types. The same pattern applies for 

microstate occurrences (increase in model fit with p<.001; ICC=.493). 

Figure 1 

Grand-mean Microstate Maps in Study 1 and Exemplary Microstate Sequences

 

Note. Top: Grand-mean maps of resting-state microstates in Study 1. Note that the four 

empirically identified microstate maps closely resemble the prototypical microstate maps 

known from the literature (Michel & Koenig, 2018). Middle and bottom: Exemplary 1-

second sequences of resting-state microstate networks for an individual with unstable 

mental processing (middle sequence) and an individual with stable mental processing 

(bottom sequence). Compared to the individual with unstable mental processing, the 

1s0,5s0s 0,25s 0,75s

Duration: 50 ms
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Unstable mental 

processing
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individual with stable mental processing shows a longer average microstate duration 

across network types (100ms vs 50ms) and less occurrences of microstates per second 

(10 vs 20). 

Associations of Self-Reported Self-Control and Stable Mental Processing 

As hypothesized, the duration of resting-state microstates was positively related to self-

reported self-control (b=.419, 95% CI [.230, .609], SE=.095, t(56)=4.41, p<.001, 

R²m=.177; see Fig. 2). To test whether this effect was driven by specific microstate types, 

we tested for an interaction of self-reported self-control with microstate types. We found 

a significantly higher model-fit after including interactions with microstate types to the 

model (p=.046), due to a weaker association of self-reported self-control with the 

duration of type A compared to type B (p=.006). However, durations of all four 

microstate types were positively associated with self-reported self-control, supporting our 

assumption of a type-independent association of microstate network stability and self-

control (see Table S3 in the supplemental materials for correlations). Furthermore, the 

occurrence of resting-state microstates was negatively related to self-reported self-control 

(b=-.370, 95% CI [-.552, -.188], SE=.091, t(56)=-4.05, p<.001, R²m=.137; see Fig. 2). 

Again, adding interactions with microstate types to the model resulted in a higher model-

fit (p=.012), revealing a stronger (negative) association of self-reported self-control with 

the occurrence of type A compared to the types B (p=.002), C (p=.016) and D (p=.018). 

However, occurrences of all four microstate types were negatively associated with self-

reported self-control, again demonstrating the type-independent association of microstate 

network stability and self-control. Adding to the reliability of our findings, effects were 

robust when controlling for EEG quality (see Table S4 in the supplemental materials) and 
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when removing outliers with regard to microstate characteristics (see Table S2 in the 

supplemental materials). Taken together, these results suggest that self-controlled 

individuals show a higher stability of mental processing in the brain when no task is at 

hand. 

Figure 2 

Associations of Stable Mental Processing with Self-Reported Self-Control and a Neural 

Index of Inhibitory Control 
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Note. Top left: Scatterplot illustrating the association of the mean microstate duration 

across the types A-D with self-reported self-control (BSCS; Tangney et al., 2004). Top 

right: Scatterplot illustrating the association of the mean microstate occurrence across the 

types A-D with self-control. Bottom left: Scatterplot illustrating the association of the 

mean microstate duration with the neural index inhibitory control as measured by the 

amount of electrical activity in the timeframe of the P300 (Global Field Power averaged 

over 300-423ms after stimulus onset) in the NoGo-condition of the CPT (Fallgatter et al., 

1997). Bottom right: Scatterplot illustrating the association of the mean microstate 

occurrence with the neural index inhibitory control. All plots include 95% confidence 

intervals and coefficients resulting from mixed model analyses. 

Associations of a Neural Index of Inhibitory Control and Stable Mental Processing 

In a second set of analyses, we used a neural index of inhibitory control (amount of 

electrical activity in the timeframe of the NoGo P300; obtained from the CPT) to predict 

the duration of microstates in a mixed model. As expected, the neural index of inhibitory 

control was positively related to microstate duration (b=.265, 95% CI [.056, .473], 

SE=.104, t(56)=2.54, p=.014, R²m=.070; see Fig. 2). All microstate types contributed 

equally to this effect, as there was no increased model-fit testing for an interaction with 

microstate types (p=.166). Furthermore, the neural index of inhibitory control was 

negatively related to microstate occurrence (b=-.241, 95% CI [-.438, -.045], SE=.098, 

t(56)=-2.45, p=.017, R²m=.059, see Fig. 2), indicating that participants with fewer 

occurrences of microstates show an increased electrophysiological response inhibition 

capacity. Again, all microstate types contributed equally to this effect, as there was no 

increased model-fit testing for an interaction with microstate types (p=.096). These 
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findings suggest that an increased P300 response during response inhibition is associated 

with stable mental processing (see Fig. 2; see Table S3 in the supplemental materials for 

correlations; see Table S2 in the supplemental materials for outlier analyses 

demonstrating the robustness of these associations). 

To test for their combined predictive power for stable mental processing, we used 

self-reported self-control and the neural index of inhibitory control as joint predictors for 

the duration (and occurrence) of microstates in multiple predictor linear mixed models. 

Both measures of self-control showed incremental validity on top of each other for the 

prediction of the duration (self-reported self-control: b=.396, 95% CI [.214, .578], 

SE=.091, t(55)=4.32, p<.001; neural index of inhibitory control: b=.223, 95% CI [.041, 

.404], SE=.091, t(55)=2.44, p=.018; R²m=.226) and the occurrence of microstates (self-

reported self-control: b=-.348, 95% CI [-.523, -.173], SE=.088, t(55)=-3.96, p<.001; 

neural index of inhibitory control: b=-.205, 95% CI [-.380, -.030], SE=.088, t(55)=-2.33, 

p=.024; R²m=.179). Compared to single-predictor models only using self-reported self-

control as a predictor, adding the neural index of inhibitory control increased the amount 

of variance explained in microstate duration by 4.6% (from 17.7% to 22.3%) and in 

microstate occurrence by 4.2% (from 13.7% to 17.9%). These results illustrate 

independent associations of stable mental processing with both perceptions and neural 

processes related to self-control. 

Associations of Control-Related Brain Areas and Stable Mental Processing 

We used sLORETA (Pascual-Marqui, 2002) to identify neural sources of inhibitory 

control during the CPT (i.e., voxels that were more active during the P300 in the NoGo-

condition compared to the P300 in the Go-condition) that were associated with task-
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independent stable mental processing. We identified a significant positive correlation of 

current source density estimates originating from the left insula and inferior frontal gyrus 

(GFP-channel, 14 voxels, p<.05, corrected; see Fig. 3 and Table S5 in the supplemental 

materials) and the mean duration of microstates (r=.42, 95% CI [.187, .616], p<.001), 

indicating that people with stronger activity in these regions during response inhibition 

show more stable mental processing at rest (there were no significant associations with 

the mean occurrence of microstates). 

Figure 3 

Association of Mean Microstate Duration with Source-Localized Brain Activity 

 

Note. Left: Locations of the voxels that showed significant correlations are indicated in 

red (corrected p<.05). Right: Scatterplot illustrating the association of mean microstate 

duration with current density (GFP-channel) in 14 voxels during the NoGo condition of 

the CPT (demonstrating the average correlation across all voxels that exceeded the 

corrected p-threshold in the same cluster). We found positive associations between 

r = .42

p = .001

R² = .181
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microstate duration and current density in the left insula (BA 13; 10 voxels; peak voxel at 

MNI (x,y,z) -40, 15, 5), and in the left inferior frontal gyrus (IFG; BAs 44, 45, and 47; 4 

voxels; peak voxel at MNI (x, y, z) –40, 15, 5). 

Results (Study 2) 

Descriptive Analyses 

Again, we found high heterogeneity of self-control across different measurement 

domains. Self-reported self-control as measured with the BSCS amounted to an average 

of 39.12 points (SD=6.90; range: 18-59) and risk-taking behavior as measured by the 

BART amounted to an average of 3.91 points (SD=2.73; range: 0.13-12.68). Self-

reported self-control was not significantly associated with risk-taking behavior (r=-.001, 

95% CI [-.196, .195], p=.996). 

On average, there were 105.64 seconds of artefact-free resting-state EEG data 

available for microstate analyses (SD=9.30; range: 50.94-112.70), and the four 

prototypical microstate types accounted for an average of 74.71% of EEG signals 

(SD=4.78; range: 55.93-84.43; see Table S6 and S7 in the supplemental materials for 

grand-mean microstate maps and detailed descriptive statistics of study 2). 

Replication Analysis: Associations of Self-Reported Self-Control and Stable Mental 

Processing 

As hypothesized via our preregistered analysis plan, a positive association of self-

reported self-control with microstate duration was replicated, albeit with a more modest 

effect size than in study 1 (b=.179, 95% CI [.003, .354], SE=.089, t(99)=2.02, p=.046, 

R²m=.032; see Fig. 4). To test whether this effect was driven by specific microstate types, 

we tested for an interaction of self-reported self-control with microstate types. We did not 
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find a significantly higher model-fit after including interactions with microstate types to 

the model (p=.090), illustrating that all microstate types contributed to the effect (see 

Table S8 in the supplemental materials for correlations). In an analogous analysis, a 

negative association of self-reported self-control with microstate occurrence was not 

replicated (b=-.140, 95% CI [-.315, .035], SE=.088, t(99)=-1.59, p=.116, R²m=.020; see 

Fig. 4). Critically, this association was significant (b=-.171, 95% CI [-.302, -.039], 

SE=.066, t(95)=-2.57, p=.012, R²m=.052) after removing outliers with regard to 

microstates characteristics (see Table S2 in the supplemental materials). Adding 

interactions with microstate types to the model did not result in a higher model-fit 

(p=.290). Overall, study 2 provided somewhat mixed evidence regarding the association 

of self-reported self-control and stable mental processing compared to study 1. However, 

outlier analyses support a replication of study 1’s findings. 
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Figure 4 

Associations of Stable Mental Processing with Self-Reported Self-Control and Risk-

Taking Behavior 

Note. Top left: Scatterplot illustrating the association of the mean microstate duration 

across the types A-D with self-reported self-control (BSCS; Tangney et al., 2004). Top 

right: Scatterplot illustrating the association of the mean microstate occurrence across the 

types A-D with self-control. Bottom left: Scatterplot illustrating the association of the 
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mean microstate duration with risk-taking behavior as measured in the BART (Lejuez et 

al., 2002). Bottom right: Scatterplot illustrating the association of the mean microstate 

occurrence with risk-taking behavior. All plots include 95% confidence intervals and 

coefficients resulting from mixed model analyses. 

Conceptual Extension: Associations of Risk-Taking Behavior and Stable Mental 

Processing 

As a conceptual extension, we tested for associations of stable mental processing with 

risk-taking behavior. As hypothesized, risk-taking behavior was negatively related to 

microstate duration (b=-.228, 95% CI [-.400, -.055], SE=.087, t(99)=-2.61, p=.010, 

R²m=.052; see Fig. 4). There was no higher model-fit after including interactions with 

microstate types to the model (p=.389). Furthermore, risk-taking behavior was positively 

associated with microstate occurrence (b=.220, 95% CI [.049, .391], SE=.086, 

t(99)=2.55, p=.012, R²m=.049; see Fig. 4), indicating that the positive association of the 

temporal stability of resting EEG networks with risk-taking behavior is driven by both 

the duration and the occurrence of microstates (see Table S8 in the supplemental 

materials for correlations; see Table S2 in the supplemental materials for outlier analyses 

demonstrating the robustness of these associations). Adding interactions with microstate 

types to the model did not result in a higher model-fit (p=.156). 

Next, we used self-reported self-control and risk-taking behavior as joint 

predictors for the duration and occurrence of resting-state microstates in multiple 

predictor linear mixed models. Both predictors showed incremental validity on top of 

each other for the prediction of microstate duration (self-reported self-control: b=.179, 

95% CI [.009, .348], SE=.086, t(98)=2.08, p=.040; risk-taking behavior: b=-.228, 95% CI 
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[-.397, -.059], SE=.085, t(98)=-2.67, p=.009 R²m=.084), and risk-taking behavior showed 

incremental validity on top of self-reported self-control for the prediction of microstate 

occurrence (self-reported self-control: b=-.140, 95% CI [-.309, .029], SE=.086, 

t(98)=-1.64, p=.105; risk-taking behavior: b=.220, 95% CI [.051, .388], SE=.085, 

t(98)=2.58, p=.012; R²m=.068). Compared to single-predictor models only using self-

reported self-control as a predictor, adding risk-taking behavior increased the amount of 

variance explained in microstate duration by 5.2% (from 3.2% to 8.4%) and in microstate 

occurrence by 4.9% (from 1.9% to 6.8%). These results illustrate independent 

associations of stable mental processing with both perceptions and behavioral preferences 

related to self-control. 

Association of Self-Reported Self-Control and Stable Mental Processing Across 

Both Studies 

In a final set of analyses, we combined the samples of Study 1 and Study 2 (N=159) to 

identify the overall association of stable mental processing with self-reported self-control. 

Across samples, self-reported self-control was positively related to microstate duration 

(b=.266, 95% CI [.135, .398], t(157)=3.99, p<.001, R²m=.071), and negatively related to 

microstate occurrence (b=-.224, 95% CI [-.353, -.094], t(157)=3.40, p<.001, R²m=.050; 

see Table S2 in the supplemental materials for outlier analyses demonstrating the 

robustness of these associations). There were no interactions with microstate types 

(prediction of microstate duration: p=.975; prediction of microstate occurrence: p=.774), 

indicating that all four types A, B, C and D contributed equally to both effects 

(correlations of self-reported self-control with the duration of type A: r=.265, 95% CI 

[.114, .404], p<.001, type B: r=.283, 95% CI [.133, .420], p<.001; type C: r=.256, 
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95% CI [.104, .396], p=.001 and type D: r=.261, 95% CI [.110, .400], p=.001; 

correlations of self-control with the occurrence of type A: r=-.266, 95% CI [-.405, -.115], 

p<.001; type B: r=-.204, 95% CI [-.349, -.050], p=.010; type C: r=-.208, 95% CI 

[-.352, -.054], p=.009 and type D: r=-.216, 95% CI [-.360, -.062], p=.006). 

Controlling for the Frequency Content of the EEG Data 

Following a reviewer’s suggestion, we analyzed associations of the mean spectral EEG 

power of the delta, theta, alpha and beta frequency band with microstate duration and the 

three indices of self-control. As several EEG power values were associated with 

microstate duration and self-control indices (see Table S9 in the supplemental materials 

for details), we re-calculated our main analyses including EEG power values as 

additional predictors. Across samples, the association of self-reported self-control with 

microstate duration remained significant (b=.227, 95% CI [.099, .355], SE=.065, 

t(153)=3.47, p<.001). In study 1, the association of the neural index of inhibitory control 

with microstate duration remained significant (b=.225, 95% CI [.052, .397], SE=.087, 

t(52)=2.57, p=.013). In study 2, the association of risk-taking behavior with microstate 

duration remained significant (b= -.215, 95% CI [-.385, -.044], SE=.086, t(95)= -2.48, 

p=.015). 

Discussion 

Self-control is commonly defined as the ability to inhibit impulses in order to achieve 

long-term goals. However, recent research has challenged the assumption that self-

control is all about inhibition. Based on both a theoretical account of self-control and 

recent research, we hypothesized that self-control is associated with stable mental 

processing as indicated by fewer, but longer lasting mental processing steps. In order to 
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test this hypothesis, we assessed mental processing stability by means of resting EEG 

microstates analysis, allowing us to determine individual durations and occurrences of 

mental processing steps when no task is at hand. Across two laboratories and two 

independent samples, we found that stable mental processing was associated with self-

report, neural and behavioral measures of self-control. Our first exploratory study 

demonstrated strong associations of stable mental processing with self-reported self-

control and a neural measure of inhibitory control (N1=58 males). Following a pre-

registered analysis plan, our second study (N2=101 [58 females]) replicated associations 

of stable mental processing with self-reported self-control, albeit the effect sizes were 

more modest than in study 1 and the association of microstate occurrence and self-

reported self-control was only significant after removing outliers. As a conceptual 

extension, study 2 revealed inverse associations of stable mental processing with risk-

taking behavior. These analyses add to the robustness of our findings, yet also suggest 

that the first study may have somewhat over-estimated the true effect size in the general 

population. 

 Our findings resonate with recent expansions of the concept of self-control 

beyond the inhibition of impulses (Fujita, 2011; Inzlicht et al., 2021). Self-control has 

been defined more broadly as the process of advancing abstract, distal motives (e.g., the 

desire to lose weight) over conflicting, concrete, and proximal motives (e.g., eating high-

caloric food). Though impulse inhibition is one important means used to solve this 

conflict, there might be other effective ways to do so. For example, one can proactively 

regulate the availability of temptations or cognitively reappraise the experience of 

temptations. One could speculate that individuals with stable mental processing are more 
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efficient in achieving long-term goals, because they have more stable mental processes 

with fewer interruptions by distracting impulses (see also research on an “implemental 

mindset” which promotes goal achievement by reducing attention to task-irrelevant 

stimuli without the need for conscious monitoring; Fujita, 2011). This idea fits with 

recent work suggesting that the biggest problem in goal achievement is not lacking 

control to resolve conflict, but rather the presence of conflicting motives to begin with 

(Inzlicht et al., 2021). Thus, people high in self-control may simply experience fewer 

interrupting impulses rather than only being better at inhibiting them. Indeed, recent 

research has observed less real-time conflict in individuals who are more successful at 

self-control (Stillman et al., 2017). 

Alongside the conceptual debate on the nature of self-control, there is an ongoing 

discussion on how to best measure this construct. Recent meta-analytic evidence 

demonstrates that different self-control measures often fail to correlate with each other 

(Wennerhold et al., 2020). In line with this, self-reported self-control was not 

significantly correlated with neural or behavioral self-control measures in our study. 

Conversely, the temporal stability of resting EEG microstates was significantly 

associated with self-report, neural and behavioral self-control measures. Thus, stable 

mental processing might represent a domain-general feature of self-control, capturing 

common variance of existing self-control measures. Note that the low convergent validity 

of existing self-control measures has been attributed to its task- and domain-specific 

measurement approach (Wennerhold et al., 2020). In contrast, stable mental processing as 

identified by resting EEG microstate analysis constitutes a task- and domain independent 
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measure, possibly contributing to its robust associations with various (domain-specific) 

self-control measures. 

 In sum, relying on EEG microstates analysis, we provide evidence that self-

control is characterized by stable mental processing as indicated by fewer, but longer 

lasting mental processing steps at rest. This study demonstrates that analyzing the 

temporal dynamics of task-independent brain activity can inform behavioral and 

cognitive sciences on the nature of the human mind. It also raises questions ripe for future 

research. Do our findings hold in larger sample sizes with distinct characteristics or are 

they limited to college students? Do individuals notice their degree of stable mental 

processing? Can we learn to engage in stable mental processing? Do stable mental 

processes at rest relate to stable mental processes while executing self-control? Following 

up on these questions has the potential to shed light on why some are better than others in 

implementing self-control and living a healthier and happier life. 

Open Practices Statement 

Study 2’s analysis plan was preregistered [https://osf.io/sajxv/]. Anonymized data of both 

studies and an analysis script including a codebook are available online 

[https://osf.io/sk3pw/]. 

Method (Study 1) 

Participants 

Based on an estimated medium effect size of associations between resting-state 

microstate characteristics and trait variables in similar research (Schiller, Kleinert, et al., 

2020), 56 participants (α=.05, power=.85, r=.35) were needed to detect a significant 

effect. To account for potential dropouts, we recruited 61 healthy right-handed men, all 
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free of current or previous history of physical and psychiatric disorders, and alcohol or 

drug abuse. Two participants were excluded due to technical problems during EEG 

measurements and one participant due to random response patterns in the Go/NoGo 

reaction-time task, resulting in a final sample size of N=58 for all analyses. The mean age 

was 24.09 years (SD=4.28, range: 18-40). Both studies were reviewed and approved by 

the Institutional Review Board of each university and carried out with the adequate 

understanding and informed written consent of participants according to the principles 

expressed in the Declaration of Helsinki. 

Procedure 

Exclusion criteria were assessed in an online screening questionnaire. Prior to the 

experimental procedure, participants completed the BSCS (Tangney et al., 2004) online. 

They then took part in two laboratory sessions, each run by two trained study assistants. 

In the first session of 90 minutes, participants were seated in a darkened, electrically 

shielded cabin for the recording of 64-channel resting EEG. A chin rest was used, and 

subjects were instructed to move as little as possible to minimize artefacts. Resting-state 

EEG was recorded for five minutes using a routine protocol consisting of 20-s eye open 

periods followed by 40-s eyes closed periods, repeated five times (Schiller et al., 2014, 

2019). This procedure is used in order to minimize fluctuations in vigilance states of 

participants. Instructions were given via intercom. Next, participants completed the 

Continuous Performance Test (CPT; Fallgatter et al., 1997) and other paradigms that are 

not part of the current study. Participants also completed a second experimental session, 

in which interactive paradigms were assessed that are evaluated elsewhere. On average, 

participants received a monetary compensation of 45.18€ (SD=1.18; range: 43.50-48.10). 
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Measurement of Self-Reported Self-Control and a Neural Index of Inhibitory 

Control 

We measured self-reported self-control using the BSCS (Tangney et al., 2004), including 

13 items on different self-control-related domains (e.g., “I am good at resisting 

temptation”). For each item, participants indicate how much it reflects how they typically 

are on a 5-point Likert scale (1=“not at all” to 5=“very much”), resulting in a final score 

of 13-65 points. The BSCS shows good internal consistency (α=.83-.85) and test-retest-

reliability after 3 weeks (r=.87), and predicts a wide range of health-related and social 

outcomes (Tangney et al., 2004). Additionally, we used the Continuous Performance Test 

(CPT) as a standard procedure to assess response inhibition using electrophysiological 

data (Fallgatter et al., 1997). The task for participants was to press a response button, if 

an “O” is followed by an “X” (O → X; Go-condition; 40 stimuli) in a series of 400 letters 

that appeared on screen for 200ms with an inter-stimulus interval of 1650ms. Response 

inhibition is required if an “O” is not followed by an “X” (e.g., O → F; NoGo-condition; 

40 stimuli). Other letters are either primers (O; 80 stimuli) or distractors (e.g., B; 240 

stimuli). A neural index of inhibitory control was calculated as the baseline-corrected, 

average event-related P300 response in NoGo-trials in a timeframe of coordinated mental 

activity in the brain (for details, see event-related EEG analysis).  

EEG Recording and Preprocessing 

Continuous resting-state EEG was recorded in an electrically shielded cabin with a 

sampling rate of 1000Hz and an online band-pass filter between 0.1 and 100Hz using 64 

Ag-AgCI active electrodes (actiCAP; Brain Products GmbH, Munich) arranged in the 

extended 10-20 system on the scalp. The signal was referenced online to an electrode on 
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site FCz, the grounding electrode was placed at AFz. Electrooculographic signals were 

measured by two electrodes at the left and right outer canthi (horizontal movement) and 

the left infra- and supraorbital (vertical movement). Preprocessing of all EEG data was 

conducted in the Brain Vision Analyzer (version 2.1.0.327; Brain Products GmbH, 

Munich). A notch filter of 50Hz and an additional band-pass filter of 2 to 20Hz were 

applied on resting-state EEG data (Michel & Koenig, 2018) and an additional band-pass 

filter of 0.1 to 30Hz in case of event-related EEG data (Schiller et al., 2016). Eye 

movement artefacts were removed using a semi-automatic independent component 

analysis. EEG channels heavily affected by artefacts were interpolated using neighboring 

electrodes. Remaining artefacts were automatically identified first (maximum amplitude 

± 100μV) and corrected manually to eliminate remaining artefacts. Finally, the signal was 

re-derived to average reference. 

EEG Resting-State Microstate Analysis 

To obtain individual information on the temporal stability of microstate networks at rest 

(i.e., stable mental processing), microstate analyses were conducted in EEGLAB 

(Delorme & Makeig, 2004) using a plugin for resting-state microstate analyses by Koenig 

(2017) that works according to standard procedures (Pascual-Marqui et al., 1995). First, 

resting EEG signals were down-sampled to 500Hz and split into segments of two seconds 

(Khanna et al., 2014). Second, EEG-data from all channels (electric potential field maps) 

were extracted at time points of maximum global field power (GFP), ensuring optimal 

signal-to-noise ratio (Michel & Koenig, 2018), and submitted to an atomize-agglomerate 

hierarchical clustering procedure (AAHC) for the identification of the four most 

predominant microstate-maps in each subject (Murray et al., 2008). In line with the 
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literature, the polarity of maps was ignored as inverted polarities emerge from 

oscillations of the same underlying electrical source generators (Michel & Koenig, 2018). 

Third, maps of all subjects were included in a second cluster analysis to obtain grand-

mean microstate maps, which were manually sorted to fit the standard order (Michel & 

Koenig, 2018). Grand-mean microstate maps of our data closely resemble the four 

prototypical resting-state microstate types A, B, C and D known from the literature (see 

Fig. 1; Michel & Koenig, 2018). Next, individual microstate maps were assigned to one 

of the four grand-mean microstate maps according to spatial correlations. Finally, 

individual maps from GFP peaks were assigned to the best fitting predominant 

microstate-map, resulting in a continuous temporal series of microstates for each subject 

from which we extracted the average duration of each microstate type in milliseconds and 

the average number of occurrences of each microstate type per second. As we were 

interested in the general, type independent temporal stability of resting-state microstates, 

duration refers to the duration of all four microstate types, and occurrence refers to the 

number of occurrences of all four microstate types per second. Overall, stable mental 

processing is reflected by longer durations and fewer occurrences of microstates across 

microstate types (as longer durations naturally go along with fewer occurrences). 

EEG Event-Related Analysis 

To obtain a neural index of inhibitory control, we first identified event-related potentials 

(ERPs) in response to the Go- and NoGo-condition in the Continuous Performance Test 

(CPT; timeframe of -200 to 1000ms after stimulus presentation). ERPs were baseline-

corrected (baseline: -200 to 0ms after stimulus presentation) and averaged. A topographic 

consistency test (Koenig et al., 2011) showed that there was no communality in EEG 
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signals across subjects earlier than 50ms after stimulus onset, which is why we chose a 

timeframe of 50 to 1000ms after stimulus presentation for further analyses. Next, we used 

an event-related microstate analysis (e.g., Schiller et al., 2016) to identify sequences of 

microstate networks in response to the Go and NoGo-condition of the CPT. For this 

purpose, ERPs were submitted to a modified k-means clustering procedure (300 random 

trials; minimum length of 30ms; conserving the polarity of the maps) in the software 

CARTOOL, using global map dissimilarity as an index of topographic difference 

between maps to identify the most dominant topographic networks (Brunet et al., 2011). 

Then, we generated grand-mean sequences of these networks in a newly generated 

channel of global field power (GFP) for the Go- and the NoGo-condition using a 

topographic fitting procedure. The ideal number of 7 microstate networks was identified 

via a synthetic meta-criterion for the best fitting microstate solution provided by 

CARTOOL (Custo et al., 2017; Michel & Koenig, 2018). In line with previous research, 

we found a prolonged latency of the P300 peak and a more anterior activation in the 

NoGo-condition compared to the Go-condition (Fallgatter et al., 1997). Notably, we 

identified an additional, more anterior microstate network in the NoGo-condition in a 

timeframe of 300 to 423ms after stimulus presentation, which was not existent in the Go-

condition (which is evaluated in detail elsewhere). A neural index of inhibitory control 

was calculated as the baseline-corrected, average amount of electrical activity (i.e., 

Global Field Power) in this timeframe of coordinated mental activity following response 

inhibition. 

EEG Source Localization Analysis 
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The sLORETA (Pascual-Marqui, 2002) solution space, which has been used in many 

EEG studies (e.g., Leota et al., 2021; Nash et al., 2013; Schiller, Domes, et al., 2020; 

Schiller et al., 2014), consists of 6.239 voxels (voxel size: 5 × 5 × 5 mm) and is restricted 

to cortical grey matter and hippocampi, as defined by the digitized Montreal Neurological 

Institute probability atlas. The sLORETA functional images represent the estimated 

electrical activity at each voxel as squared magnitude (i.e., power) of computed current 

density (unit: amperes per square meter, A/m2). sLORETA estimates the electrical 

neuronal activity without assuming a predefined number of sources. Our aim was to 

identify the intracerebral sources underlying the association of the NoGo P300 and stable 

mental processing. For that purpose, we averaged all scalp maps within the time periods 

covered by the P300-microstate in the Go- and NoGo conditions of the CPT (i.e., 300-

423ms after stimulus onset; fixed time window across participants) and then estimated 

the individual sLORETA images. Using the regularization method in the sLORETA 

software, we chose the transformation matrix with the signal-to-noise set to 10. To reduce 

confounds that have no regional specificity, we normalized sLORETA images for each 

subject and for each condition to a total power of one and then log-transformed them 

before statistical analyses. 

Statistical Analysis 

The goal of the current study was to evaluate associations of self-control measures (self-

reported self-control and a neural index of inhibitory control) with stable mental 

processing (i.e., longer durations and fewer occurrences of microstate networks). We 

calculated two-tailed linear mixed models with microstate characteristics (i.e., duration, 

occurrence) as dependent variables, self-control measures as independent variables, and 
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random intercepts across participants (no random slope used; see also Atluri et al., 2018). 

To test, if characteristics of specific microstate types (A, B, C or D) show stronger or 

weaker associations with indices of self-control, we added interactions with dummy 

variables of microstate types to the respective model in a next step, allowing for a direct 

comparison of effects between microstate types (see Table S10 in the supplemental 

materials for a full exemplary analysis). All metric variables were z-standardized prior to 

analyses. Marginal R-squared values (R²m) were calculated following the recommended 

procedure by Nakagawa and Schielzeth (2013). In a first set of analyses, we tested for 

associations of self-reported self-control with the duration and occurrence of resting-state 

microstates using the procedure described above. In a second set of analogous analyses, 

we tested for associations of a neural index of inhibitory control with the duration and 

occurrence of microstates. Next, we added both indices of self-control as joint predictors 

in one linear mixed model to test if a higher percentage of variance in the duration (and 

occurrence) of resting-state microstates can be explained by combining self-report and 

neural measures of self-control. To test for the reliability of our results, we repeated the 

main analyses using microstate characteristics adjusted for the total EEG time available 

in order to control for EEG quality (see Table S4 in the supplemental materials). 

Furthermore, we found associations of the mean spectral EEG power of the delta, theta, 

alpha and beta frequency band with microstate duration and self-control indices (see 

Table S9 in the supplemental materials). Therefore, we controlled for power values by 

adding them as additional predictors to our main analyses. We also tested for the 

robustness of our findings by excluding outliers with regard to microstate characteristics 

(see Table S2 in the supplemental materials). All analyses yielded highly comparable 
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results. Lastly, we examined whether source-localized brain activity during response 

inhibition in the CPT was associated with the temporal stability of resting-state 

microstates by regressing the sLORETA images of the NoGo condition on the average 

duration of resting-state microstates. We restricted this voxel-by-voxel regression 

analysis to voxels, which were more active during the NoGo- compared to the Go-

condition (461 voxels encompassing mostly fronto-cingulate regions; p<.01; see Table S5 

in the supplemental materials). Correction for multiple testing was implemented by 

means of a nonparametric randomization approach, which estimated the empirical 

probability distributions and the corresponding corrected (for multiple comparisons) 

critical probability thresholds (r>.37, p<.05).  

Method (Study 2) 

Participants 

For a preregistered replication analysis in Study 2, we used an already collected, 

substantially larger sample of 110 first year psychology students. Nine participants were 

excluded due to poor quality of resting EEG recordings, resulting in a final sample size of 

N=101 for all analyses (58 females, 43 males). The mean age was 19.76 years (SD=1.62, 

range: 17-26). Gender differences were not further considered in Study 2, as females and 

males did not show any significant differences (see Table S11 in the supplemental 

materials). 

Procedure 

Participants were equipped with a 64-channel EEG system (Brain Products GmbH, 

Munich, Germany). All tasks were completed in an electrically- and noise-shielded cabin 

on a computer using Presentation (version 18.0, Neurobehavioral Systems, Inc., 



THE SELF-CONTROLLED MIND                                                                                  33 
 

 

Berkeley, CA). First, demographic information and several questionnaires were collected, 

including the BSCS. Second, a four-minute resting EEG was recorded (60-s eyes-open 

period followed by a 60-s eyes-closed period, repeated two times in total). Again, only 

eyes-closed periods were used for further EEG analysis (two minutes). Participants were 

then randomly assigned to one of two experimental conditions that are unrelated to the 

current study (anxiety or control). Note that controlling for experimental conditions had 

no impact on the main results of this study (see Table S12 in the supplemental materials). 

Afterwards, participants completed two tasks that will be evaluated elsewhere, followed 

by the BART for the measurement of risk-taking behavior. Finally, participants were 

thanked for their time and compensated with class credit. The average duration of the 

experiment was 110 minutes. 

Measurement of Self-Reported Self-Control and Risk-Taking Behavior 

Self-reported self-control was measured with the BSCS that we used in Study 1 (Tangney 

et al., 2004). Risk-taking behavior was measured with the BART, which is associated 

with self-control deficiencies, impulsivity and sensation seeking, as well as addictive, 

safety- and health-risk behavior (Lejuez et al., 2002). In the BART, participants were 

informed that they could increase their number of ballots in a lottery (price of 100$) by 

performing well in a balloon-pumping game. The task was to press a button to pump up 

balloons (20 in total) that would explode after an unknown and variable number of pumps 

(explosion threshold; 15 pumps on average). Balloons were inflated more and more with 

every pump, each earning one ballot but also bringing the balloon closer to the explosion 

threshold. Participants earned no ballots for exploded balloons. In each trial, they could 

stop pumping at any time in order to retain the earned ballots and continue with the next 



THE SELF-CONTROLLED MIND                                                                                  34 
 

 

trial. An individual score of risk-taking behavior (RT) was computed as (RT=average 

pumps * (explosions + 1)/total number of trials). Thus, RT increases with a higher 

average number of pumps and explosions, making it a more sensitive and valid measure 

of risk-taking compared to traditional measures which focus on the number of either 

pumps or explosions (also see Leota et al., 2021). Following a reviewer’s suggestion, we 

also checked whether our findings remain robust when using an alternative risk-taking 

score, as originally proposed by Lejuez et al., 2002. All reported associations remained 

significant (association of the alternative risk-taking measure with microstate duration: 

b=-.215, 95% CI [-.388, -.042], SE=.088, t(99)=-2.45, p=.016, R²m=.047; association of 

the alternative risk-taking measure with microstate occurrence: b=.198, 95% CI [.026, 

.370], SE=.087, t(99)=2.28, p=.025, R²m=.040). 

EEG Recording, Preprocessing and Resting-State Microstate Analysis 

In our Canadian sample, continuous resting-state EEG was recorded in an electrically 

shielded cabin with a sampling rate of 500Hz and an online band-pass filter between 0.1 

and 100Hz using 64 Ag-AgCI active electrodes (actiCHamp; Brain Products GmbH, 

Munich) arranged in the 10-10 system on the scalp. The signal was referenced online to 

an electrode on site TP9 over the left mastoid. EEG preprocessing-steps and the resting-

state microstate analysis were conducted in the exact same way as in Study 1. 

Statistical Analysis 

Again, we calculated linear mixed models with microstate characteristics (i.e., duration, 

occurrence) as dependent variables, self-control and/or risk-taking behavior as 

independent variables (all variables z-standardized), and a random intercept across 

participants (no random slope used). Again, we added interaction-terms with dummy 
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variables of microstate types to the respective model in a next step, allowing for a direct 

comparison of effects between microstate types. First, we aimed to replicate a positive 

association of self-reported self-control with microstate duration and a negative 

association with microstate occurrence. Second, we applied a conceptual extension by 

testing for a negative association of risk-taking behavior with microstate duration and a 

positive association with microstate occurrence. Finally, we added both self-reported self-

control and risk-taking behavior as joint predictors in multiple predictor linear mixed 

models to test if a higher percentage of variance in the duration (and occurrence) of 

resting-state microstates can be explained by combining self-report and behavioral 

measures of self-control.  
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Table S1 

Descriptive Statistics of all Variables in Study 1 

Variable Min Max Mean SD 

Measures of self-control 

Self-reported self-control (BSCS) 19 51 37.60 6.90 

Neural index of inhibitory control 

(NoGo P300) 

1.78 12.64 5.73 2.23 

Microstate characteristics 

Duration network A 53.60 114.00 75.11 13.72 

Duration network B 50.40 103.00 69.04 11.03 

Duration network C 49.40 91.10 69.66 10.79 

Duration network D 48.40 117.00 69.70 12.99 

Mean duration A-D 52.90 98.50 71.60 10.42 

Occurrence network A 2.53 5.22 3.77 .632 

Occurrence network B 2.10 5.12 3.38 .692 

Occurrence network C 2.15 5.43 3.50 .625 

Occurrence network D 2.24 5.14 3.60 .661 

Mean occurrence A-D 10.20 18.90 14.25 2.05 

Note. N = 58. Min = minimum value, Max = maximum value, Mean = mean value, SD = 

standard deviation.  
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Table S2 

Main Results Controlling for Outliers in Microstate Characteristics 

Study 1 & 2: Predicting stable mental processing with self-reported self-control (N = 152; 

three outliers in microstate duration and five outliers in microstate occurrence removed) 

Microstate characteristics b SDE t(150) p R²m 

Duration .265 .063 4.22 < .001 .080 

Occurrence -.220 .053 -4.16 < .001 .072 

Study 1: Predicting stable mental processing with self-reported self-control (N = 55; two 

outliers in microstate duration and one outlier in microstate occurrence removed) 

Microstate characteristics b SDE t(54) p R²m 

Duration  .374 .094 3.97 < .001 .156 

Occurrence -.333 .091 -3.65 < .001 .120 

Study 1: Predicting stable mental processing with the neural index of inhibitory control 

(N = 55; two outliers in microstate duration and one outlier in microstate occurrence 

removed) 

Microstate characteristics b SDE t(52) p R²m 

Duration  .259 .099 2.61 .012 .078 

Occurrence -.240 .094 -2.54 .014 .065 

Study 2: Predicting stable mental processing with self-reported self-control (N = 97; four 

outliers in microstate occurrence removed) 

Microstate characteristics b SDE t(95) p R²m 

Duration .197 .081 2.43 .017 .046 
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Occurrence -.171 .066 -2.57 .012 .052 

Study 2: Predicting stable mental processing with risk-taking behavior (N = 97; four outliers 

in microstate occurrence removed) 

Microstate characteristics b SDE t(95) p R²m 

Duration -.184 .083 -2.21 .030 .038 

Occurrence .157 .068 2.29 .024 .042 

Note. b = regression coefficient, SDE = standard error, t(df) = t-value (degrees of freedom), 

p = p-value, R²m = marginal R-squared value. Results of mixed model analyses testing for 

the robustness of our findings when removing outlier values in microstate characteristics 

(+/- 3 standard deviations from the mean). 
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Table S3 

Correlations of Study 1 

 Self-reported self-control Neural index of inhibitory 

control 

Microstate characteristics r p r p 

Duration microstate A .237 .074 .347 .008 

Duration microstate B .559 < .001 .113 .399 

Duration microstate C .460 < .001 .336 .010 

Duration microstate D .422 .001 .263 .046 

Mean duration A-D .478 < .001 .330 .011 

Occurrence microstate A -.628 < .001 -.185 .165 

Occurrence microstate B -.224 .091 -.441 .001 

Occurrence microstate C -.311 .017 -.139 .300 

Occurrence microstate D -.316 .016 -.201 .129 

Mean occurrence A-D -.463 < .001 -.312 .017 

Note. N = 58. r = Pearson correlation coefficient; p = p-value. Bold values indicate 

significant correlations (two-sided, alpha level = .05). Note that 8/8 correlations of 

microstate durations with self-reported self-control and the neural index of inhibitory 

control are positive, and 8/8 correlations of microstate occurrences with self-reported 

self-control and the neural index of inhibitory control are negative. 
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Table S4 

Main Effects Using Resting-State Microstate Characteristics Adjusted for the Total EEG 

Time Available in Study 1 

Predicting stable mental processing with self-reported self-control 

Microstate characteristics b SDE t(56) p R²m 

Duration (adjusted model 1) .384 .098 3.92 < .001 .147 

Occurrence (adjusted model 2) -.344 .093 -3.69 < .001 .118 

Predicting stable mental processing with the neural index of inhibitory control 

Microstate characteristics b SDE t(56) p R²m 

Duration (adjusted model 3) .253 .105 2.41 .019 .064 

Occurrence (adjusted model 4) -.233 .099 -2.35 .022 .054 

Note. N = 58. b = regression coefficient, t(df) = t-value (degrees of freedom), p = p-value, 

R²m = marginal R-squared value. Participants with higher self-reported self-control might 

move less during resting EEG measures, resulting in a higher quality of the EEG signal 

and thus a higher duration (and a lower occurrence) of microstates. Addressing this issue, 

we calculated mixed model analyses using microstate characteristics adjusted for the total 

EEG time available as dependent variables. The total EEG time represents a strong 

indicator of EEG quality (i.e., more EEG time reflects higher quality), as artefacts were 

excluded from the signal (see method). Confirming our key findings (see Table 2, Figure 

1, Figure 2), self-reported self-control and the neural index of inhibitory control (P300 

activity in the NoGo-condition of the CPT) were positively associated with the adjusted 

duration, and negatively associated with the adjusted occurrence of microstates across all 

four types A-D. Testing for interactions with microstate types, we found an increased 
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model-fit (p = .046) in adjusted model 1 due to a lower association of self-reported self-

control with the duration of type A compared to type B (p = .006) and an increased model-

fit (p = .012) in adjusted model 2 due to a lower association of self-reported self-control 

with the occurrence of type A compared to the types B (p = .002), C (p = .016) and  D 

(p = .018). Testing for interactions in the adjusted models 3 and 4, we did not find increased 

model-fits (all p ≥ .096). In sum, these results confirm positive associations of both indices 

of self-control with microstate stability when controlling for total EEG time. 
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Table S5 

Activated Voxels in the NoGo-Condition Compared to the Go-Condition in Study 1 

Region Hemisphere BA tmax x y  z  Voxels 

Superior Frontal Gyrus L/R 8/9 8.28 -20 40 50 35 

Precentral Gyrus L 4/6/9/43/44 8.07 -35 0 30 78 

Middle Frontal Gyrus L 6/8/9/11/47 7.29 -50 5 50 77 

Medial Frontal Gyrus L/R 6/8/9 7.25 -15 25 35 26 

Insula L 13 8.72 -35 5 20 51 

Inferior Frontal Gyrus L 9/44/45/47 8.23 -35 5 30 50 

Cingulate Gyrus L/R 24/32 8.61 -10 15 30 78 

Anterior Cingulate L/R 24/25/32/33 8.99 -5 20 20 44 

Note. Region = region as labelled by sLORETA (50); Hemisphere = hemisphere of the 

cluster (L = left, R = right; note that bilateral clusters with voxels that were not separated 

by at least 10 mm were counted as one cluster); BA = Brodmann area of maximum t-

value(s); tmax = maximum t-value within a cluster; x, y, z = MNI coordinates; 

Voxels = number of activated voxels within the cluster. Table showing regions with at 

least 10 significantly activated voxels (alpha level: 1%, one-tailed, NoGo > Go, whole-

brain corrected).  
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Table S6 

Grand-Mean Microstates Maps in Study 2 

Microstate A B C D 

Map 

    

Note. Grand-mean maps of resting-state microstates in Study 2 (for descriptive statistics 

see Table S7 in the supplementary material). Note the high similarity with the grand-

mean microstate maps obtained from our original German sample (Study 1; see Figure 1).  
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Table S7 

Descriptive Statistics of all Variables in Study 2 

Variable Min Max Mean SD 

Measures of self-control 

Self-reported self-control (BSCS) 18 59 39.12 8.73 

Risk-taking behavior (BART) .13 12.68 3.91 2.73 

Characteristics of resting-state microstates 

Duration network A 20.63 84.49 47.20 13.10 

Duration network B 13.03 76.17 44.86 11.50 

Duration network C 15.68 78.73 48.63 13.34 

Duration network D 20.25 85.15 48.03 14.39 

Mean duration A-D 20.25 80.47 47.69 11.99 

Occurrence network A 3.14 15.47 5.63 1.93 

Occurrence network B 2.37 11.59 5.29 1.75 

Occurrence network C 2.92 15.25 5.86 1.84 

Occurrence network D 3.25 15.26 5.76 2.01 

Mean occurrence A-D 12.43 49.39 22.54 6.77 

Note. N = 101. Min = minimum value, Max = maximum value, Mean = mean value, SD 

= standard deviation.  
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Table S8 

Correlations of Study 2 

 Self-reported self-control Risk-taking behavior 

Microstate characteristics r p r p 

Duration microstate A .282 .004 -.226 .023 

Duration microstate B .125 .213 -.162 .106 

Duration microstate C .140 .164 -.253 .011 

Duration microstate D .169 .091 -.273 .006 

Mean duration A-D .199 .046 -.253 .011 

Occurrence microstate A -.060 .553 .167 .094 

Occurrence microstate B -.193 .053 .312 .002 

Occurrence microstate C -.149 .137 .173 .083 

Occurrence microstate D -.159 .113 .230 .021 

Mean occurrence A-D -.155 .123 .244 .014 

Note. N = 101. r = Pearson correlation coefficient; p = p-value. Bold values indicate 

significant correlations (two-sided, alpha level = .05). Note that 8/8 correlations of 

microstate durations with self-reported self-control and risk-taking behavior are positive, 

and 8/8 correlations of microstate occurrences with self-reported self-control and risk-

taking behavior are negative.  
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Table S9 

Associations of the Mean Spectral Power of EEG Frequency Bands with Microstate 

Duration and Indices of Self-Control 

Predicting microstate duration with EEG frequency bands (N = 159) 

Predictors b SDE t(157) p R²m 

Mean delta power  .080 .066 1.21 .225 .007 

Mean theta power .227 .067 3.46 < .001 .052 

Mean alpha power .154 .055 2.79 .006 .025 

Mean beta power -.011 .064 -.166 .868 < .001 

Predicting self-reported self-control with EEG frequency bands (N = 159) 

Predictors β t(157) p R² 

Mean delta power  .228 2.94 .004 .052 

Mean theta power .172 2.19 .030 .030 

Mean alpha power .104 1.31 .192 .011 

Mean beta power .042 .526 .599 .002 

Predicting the neural index of inhibitory control with EEG frequency bands (N = 58) 

Predictors β t(56) p R² 

Mean delta power  .135 1.02 .313 .018 

Mean theta power .108 .816 .418 .012 

Mean alpha power .156 1.19 .241 .024 

Mean beta power .262 2.03 .047 .069 

Predicting risk-taking behavior with EEG frequency bands (N = 101) 



THE SELF-CONTROLLED MIND                                                                                  55 
 

 

Predictors β t(100) p R² 

Mean delta power  .118 1.18 .239 .014 

Mean theta power -.037 -.373 .710 .001 

Mean alpha power -.090 -.900 .371 .008 

Mean beta power -.025 -.251 .802 < .001 

Note. b = regression coefficient (linear mixed models), SDE = standard error (linear 

mixed models), β = standardized regression coefficient (linear regression analyses), t(df) 

= t-value (degrees of freedom), p = p-value, R²m = marginal R-squared value (linear 

mixed models), R² = R-squared value (linear regression analyses). Results of mixed 

model analyses testing for associations of the mean spectral power of EEG frequency 

bands in the resting-state EEG with microstate duration, and results of linear regression 

analyses testing for associations of the mean spectral power of EEG frequency bands 

with self-reported self-control (N = 159), the neural index of inhibitory control (N = 58) 

and risk-taking behavior (N = 101).  
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Table S10 

Exemplary Linear Mixed Model Analysis in Study 1 

Single predictor model (main effect) 

Predictor b SDE t(56) p R²m 

Self-control .419 .095 4.41 < .001 .177 

Interactions of microstate types with reference to type A 

Predictor b SDE t(56) p R²m 

Self-reported self-control .237 .095 1.98 .053 

.190 

Interaction with dummy type B .323 .117 2.77 .006 

Interaction with dummy type C .223 .117 1.91 .058 

Interaction with dummy type D .186 .117 1.59 .113 

Interactions of microstate types with reference to type B 

Predictor b SDE t(56) p R²m 

Self-reported self-control .559 .095 4.68 < .001 

.190 

Interaction with dummy type A -.323 .117 -2.77 .006 

Interaction with dummy type C -.100 .117 -.856 .393 

Interaction with dummy type D -.137 .117 -1.17 .242 

Interactions of microstate types with reference to type C 

Predictor b SDE t(56) p R²m 

Self-reported self-control .460 .095 3.85 < .001 

.190 

Interaction with dummy type A -.223 .117 -1.91 .058 

Interaction with dummy type B .100 .117 .856 .393 
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Interaction with dummy type D -.037 .117 -.318 .751 

Interactions of microstate types with reference to type D 

Predictor b SDE t(56) p R²m 

Self-reported Self-control .422 .095 3.53 < .001 

.190 

Interaction with dummy type A -.186 .117 -1.59 .113 

Interaction with dummy type B .137 .117 1.17 .242 

Interaction with dummy type C .037 .117 .318 .751 

Note. N = 58. b = regression coefficient, SDE = standard error, t(df) = t-value (degrees of 

freedom), p = p-value, R²m = marginal R-squared value explained by the respective 

model. Exemplary linear mixed model analysis for the prediction of the duration of 

resting-state microstates across types with self-reported self-control using a dataset in 

long format with 4 observations per participant (due to 4 microstate types) and a random 

intercept across participants. First, only self-reported self-control is included in a single 

predictor model, illustrating a significant positive main effect. Next, interactions of self-

reported self-control with dummy variables of microstate types are added to the model 

(e.g., the dummy variable of microstate A consists of ones for all characteristics of 

microstate A and zeros for all characteristics of microstate types other than A). These 

four additional interaction models allow for a direct comparison of associations between 

self-reported self-control and microstate durations with reference to one specific type 

(e.g., a positive coefficient of an interaction term indicates a stronger association of self-

reported self-control with the duration of this specific network type compared to the 

reference type). Note, that main effects should be interpreted with caution in models 

including higher-level interaction-terms. In our example, adding interactions with 
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dummies leads to a significant increase in the model fit compared to the single-predictor 

model (p = .046), with additional variance being explained (increase of approximately 

1.3%). Inspecting the data, we can draw the conclusion that the association of self-

reported self-control with the duration of microstate B is significantly stronger compared 

to the association with the duration of microstate A (see interactions of network types 

with reference to type A; b = .323, p = .006). Note that this is equal to the conclusion that 

the association of self-reported self-control with the duration of microstate A is 

significantly weaker compared to the association with the duration of microstate B 

(interactions of network types with reference to type B; b = -.323, p = .006).  
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Table S11 

Confirmation of Main Findings Controlling for Gender in Study 2 

Predicting microstate duration with self-reported self-control and gender 

Predictors b SDE t(97) p R²m 

Self-reported self-control  .204 .146 1.39 .167 

.047 

Gender .241 .177 1.37 .175 

Self-reported self-control*gender -.048 .181 -.264 .793 

Predicting microstate occurrence with self-reported self-control and gender 

Predictors b SDE t(97) p R²m 

Self-control -.156 .148 -1.05 .296 

.026 

Gender -.171 .179 -.953 .343 

Self-reported self-control*gender  .032 .183 .173 .863 

Predicting microstate duration with risk-taking behavior and gender 

Predictors b SDE t(97) p R²m 

Risk-taking behavior -.215 .127 -1.69 .094 

.067 

Gender .239 .174 1.37 .173 

Risk-taking behavior*gender  -.021 .172 -.124 .901 

Predicting microstate occurrence with risk-taking behavior and gender 

Predictors b SDE t(97) p R²m 

Risk-taking behavior .234 .128 1.83 .071 

.054 

Gender -.167 .176 -.948 .345 

Risk-taking behavior*gender  -.031 .174 -.177 .860 
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Note. N = 101. b = regression coefficient, SDE = standard error, t(df) = t-value (degrees 

of freedom), p = p-value, R²m = marginal R-squared value. Results of mixed model 

analyses testing for an interaction of the main effects of Study 2 with gender. There were 

no interactions of self-reported self-control or risk-taking behavior with gender in any of 

the models. As there were also no theoretical reasons to assume gender differences in 

fundamental resting-state microstates, we did not analyze these differences any further.  
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Table S12 

Confirmation of Main Findings Controlling for Condition in Study 2 

Predicting microstate duration with self-reported self-control and condition 

Predictors b SDE t(97) p R²m 

Self-reported self-control  .230 .138 1.67 .098 

.036 

Condition -.096 .178 -.540 .591 

Self-reported self-control* condition -.091 .177 -.515 .608 

Predicting microstate occurrence with s self-reported elf-control and condition 

Predictors b SDE t(97) p R²m 

Self-reported self-control -.166 .139 -1.19 .236 

.020 

Condition .008 .180 .044 .965 

Self-reported self-control*condition  .048 .179 .265 .791 

Predicting microstate duration with risk-taking behavior and condition 

Predictors b SDE t(97) p R²m 

Risk-taking behavior -.257 .121 -2.12 .037 

.058 

Condition -.140 .176 -.798 .427 

Risk-taking behavior*condition  .046 .174 .267 .790 

Predicting microstate occurrence with risk-taking behavior and condition 

Predictors b SDE t(97) p R²m 

Risk-taking behavior .245 .122 2.00 .048 

.049 

Condition .048 .177 .271 .787 

Risk-taking behavior*condition  -.049 .175 -.278 .782 
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Note. N = 101. b = regression coefficient, SDE = standard error, t(df) = t-value (degrees of 

freedom), p = p-value, R²m = marginal R-squared value. Results of mixed model analyses 

testing for an interaction of the main effects of Study 2 with experimental conditions. There 

were no interactions of Self-reported self-control or risk-taking behavior with condition in 

any of the models, which is why we did not analyze these results any further. 

 

 


