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Self-control is a fundamental trait that relates to the 
regulation of behavior and has been defined as the 
ability to inhibit impulses in order to achieve long-term 
goals (Inzlicht et al., 2021). Research has confirmed the 
adaptive nature of self-control, demonstrating that self-
controlled individuals show increased economic, physi-
cal, and psychological well-being (de Ridder et  al., 
2012; Tangney et al., 2004). However, recent findings 
cast doubt on the validity of both the leading theoretical 
model of self-control (i.e., the strength model; Vohs 
et  al., 2021) and distinct self-control measures (e.g., 
Wennerhold & Friese, 2020). Furthermore, by conceptu-
ally focusing on the role of inhibitory processes, 
researchers may have neglected other aspects of self-
control (e.g., proactively avoiding temptations or using 
cognitive reconstruals to alter the experience of tempta-
tions; see also the Discussion section, second para-
graph, and Fujita, 2011; Inzlicht et al., 2021).

These issues raise questions about how well we have 
actually understood the construct of self-control. On the 
basis of overlooked theoretical models and empirical 
findings, which suggest that self-controlled individuals 
are less prone to distracting impulses, we hypothesized 
that self-control is associated with a less distracted 
mind, characterized by more stable and longer-lasting 
mental-processing steps. To test this hypothesis, we 
relied on microstate analysis of resting-state electroen-
cephalography (EEG; Bréchet et al., 2020; da Cruz et al., 
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Abstract
Self-control—the ability to inhibit inappropriate impulses—predicts economic, physical, and psychological well-being. 
However, recent findings demonstrate low correlations among self-control measures, raising the question of what self-
control actually is. Here, we examined the idea that people high in self-control show more stable mental processing, 
characterized by processing steps that are fewer in number but longer lasting because of fewer interruptions by 
distracting impulses. To test this hypothesis, we relied on resting electroencephalography microstate analysis, a method 
that provides access to the stream of mental processing by assessing the sequential activation of neural networks. 
Across two samples (Study 1: N = 58 male adults from Germany; Study 2: N = 101 adults from Canada, 58 females), 
the temporal stability of resting networks (i.e., longer durations and fewer occurrences) was positively associated with 
self-reported self-control and a neural index of inhibitory control, and it was negatively associated with risk-taking 
behavior. These findings suggest that stable mental processing represents a core feature of a self-controlled mind.
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2020; Nagabhushan Kalburgi et al., 2020). This analysis 
provides access to the stream of mental processing by 
assessing the sequential activation of (usually) four 
large-scale brain networks at a millisecond resolution 
(for a review, see Michel & Koenig, 2018). We speculate 
that the temporal stability (i.e., longer durations and 
fewer occurrences) across the four network types indi-
cates an individual’s general mental-processing stability. 
In order to investigate mental processing free of context, 
we focused on analyzing task-independent brain 
networks.

The strength model holds that self-control is a domain-
general resource with a limited capacity that varies in 
individual strength and that high self-control demands 
lead to depletion of this resource, as indicated by per-
formance decreases during consecutive tasks (Baumeister 
et al., 2007). However, recent meta-analyses have shown 
that this depletion effect is much smaller than previously 
thought (e.g., Vohs et al., 2021), leaving a gap within 
self-control theory. If self-control is not a limited resource, 
what is it?

To answer this question, it could help to look at how 
researchers have measured this construct. Self-report 
measures such as the Brief Self-Control Scale (BSCS) 
capture cognitively available aspects of self-control by 
having participants respond to items like “I am good at 
resisting temptation” (Tangney et al., 2004). Incentiv-
ized risk tasks, like the Balloon Analogue Risk Task 
(BART; Lejuez et al., 2002), indirectly assess self-control 
by having participants choose between smaller but 
secure, and larger but insecure, monetary gains. Finally, 
researchers have analyzed inhibitory-control-related 
brain activity during both task-independent and task-
dependent processing, arguing that neural measures 
may provide the most direct indices of self-control. An 
example is the baseline activation in inhibitory-control-
related brain regions (Schiller et  al., 2014) and the 
no-go P300 amplitude, a task-dependent neural index 
of inhibitory control that is registered while participants 
are inhibiting prepotent motor responses (Nash et al., 
2013). In sum, although existing self-report, behavioral, 
and neural measures of self-control choose different 
routes to access the construct, they share the assump-
tion that self-control relates to inhibitory capacity. Yet 
associations among these measures are commonly weak 
or absent (Wennerhold & Friese, 2020). The ongoing 
confusion about the right way to measure self-control 
emphasizes the need to reconceptualize the construct 
by identifying other core features of self-control across 
measures.

Here, we argue that a core feature of self-control is 
stable mental processing characterized by fewer but 
longer-lasting mental-processing steps because of fewer 
interruptions by distracting impulses. This hypothesis 

is based on three main pieces of suggestive theoretical 
and empirical evidence. First, different measures of self-
control share the notion that a self-controlled mind is 
able to shield against mental interruptions, such as 
distracting events or impulsive urges, in order to main-
tain a stable, higher-order goal (Schiffer et al., 2015). 
For example, scoring high on the item “Sometimes I 
can’t stop myself from doing something, even if I know 
it is wrong” will result in a lower score on the BSCS 
(Tangney et  al., 2004). In line with this notion, the 
Continuous Performance Test (CPT) measures people’s 
ability to quickly respond to specific stimuli while 
neglecting distracting ones (Fallgatter et  al., 1997). 
Moreover, in incentivized risk tasks participants have 
to resist the impulse to obtain potential immediate high-
gain rewards in order to maximize their long-term profit 
(Lejuez et  al., 2002). Second, research on attention-
deficit/hyperactivity disorder (ADHD), a mental disor-
der associated with deficient self-control, suggests that 
an “uncontrolled mind” is reflected by unstable mental 
processing prone to interruption by distracting impulses 
(Castellanos et al., 2006). Specifically, the inability to 
distinguish between relevant and irrelevant information 
is assumed to lead to increased vulnerability for insig-
nificant information to intrude into the current mental 
process (Fassbender et  al., 2009). These deficiencies 
impair performance in objective self-control measures, 
as evidenced by more errors and more variable response 

Statement of Relevance

Self-control enables us to regulate our behavior in 
order to achieve long-term goals. Indeed, scientists 
have found that people with high self-control live 
happier and healthier lives. Yet the differences 
between a self-controlled mind and an impulsive 
mind have remained unclear. Here, we analyze the 
relationship between self-report, neural, and 
behavioral measures of self-control and brain 
activity when a person’s mind is free to wander 
and no task is at hand. We demonstrate that self-
controlled individuals show fewer but longer- 
lasting mental-processing steps. These results sug-
gest that people with high self-control have more 
stable mental processes with fewer interrupting 
thoughts and impulses. Our findings illustrate that 
analyzing the mental flow of the resting brain can 
reveal crucial information on the nature of our 
minds. In the future, assessing individual differ-
ences in the stability of mental processing could 
be helpful in understanding and treating disorders 
associated with deficient self-control.
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times in the CPT (Epstein et al., 2003) and more impul-
sive decision-making in the BART (Humphreys & Lee, 
2011). Third, it has been observed that self-control is 
negatively associated with mind wandering (r = −.49, 
p < .001), a mental-processing style characterized by 
many interruptions of mental processing and conse-
quently shorter processing steps (Deng et al., 2019). In 
sum, a broad array of research supports the theoretical 
assumption that a core feature of self-control is stable 
mental processing. But how can we actually gain access 
to an individual’s mental processing style to test this 
hypothesis?

An ideal tool to identify mental-processing steps on 
a millisecond scale is EEG microstate analysis (Michel 
& Koenig, 2018). Microstate analysis uses clustering of 
electrophysiological data to obtain a sequential activa-
tion of large-scale brain networks and quantify their 
temporal characteristics (e.g., average duration, aver-
age occurrences per second). This approach is consis-
tent with the notion that self-control is associated with 
the activation of whole-brain neural networks (Schiller 
& Delgado, 2010). Microstates arise because of simul-
taneous activation of specific neuronal assemblies and 
thus reflect temporarily stable episodes of coherent 
mental activity (Michel & Koenig, 2018). Based on the 
idea that microstates represent the individual units that 
constitute the stream of mental processing, each micro-
state may be described as a distinct mental processing 
step. In the resting brain, microstates remain stable for 
approximately 40 to 120 ms before quickly changing 
into other networks (Lehmann et  al., 1987). Further 
illustrating microstates’ fundamental character, four 
prototypical types of microstate networks (A–D) 
account for approximately 80% of the variance in rest-
ing EEG recordings of almost every single individual 
(Michel & Koenig, 2018). Importantly, the average 
duration of microstate networks in milliseconds and 
their average number of occurrences per second are 
highly correlated across microstate types (duration: r = 
.79, occurrence: r = .51; Khanna et al., 2014). This sug-
gests that individuals have a general tendency for more 
(fewer but longer-lasting microstates) or less (more but 
shorter-lasting microstates) stable mental processing 
at rest (beyond associations of specific microstates’ 
stability with different levels of consciousness, neuro-
psychiatric conditions, and cognitive contents; for a 
review, see Michel & Koenig, 2018).

Here, we investigated the hypothesis that self-report, 
neural, and behavioral measures of self-control show 
associations with stable mental processing, although 
these measures may not correlate with each other 
(Wennerhold & Friese, 2020). In Study 1, we first tested 
for associations of stable mental processing with self-
reported self-control (BSCS; Tangney et al., 2004) in 58 

healthy men. Second, we tested for associations with a 
neural index of inhibitory control (the no-go P300 in 
the CPT; Fallgatter et  al., 1997). Third, we localized 
neural sources of inhibitory control and investigated 
whether stable mental processing is associated with 
cortical activity in these sources (using standardized 
low-resolution brain electromagnetic tomography 
[sLORETA]; Pascual-Marqui, 2002). In Study 2, we car-
ried out the same analysis plan as in Study 1 (prereg-
istered at https://osf.io/sajxv/), in order to replicate 
associations of self-control and stable mental process-
ing in an already-collected sample of 101 participants 
(58 females). As a conceptual extension, we tested the 
hypothesis that stable mental processing is negatively 
associated with risk-taking behavior (BART; Lejuez 
et al., 2002).

Study 1

Method

Participants.  Based on an estimated medium effect size 
of associations between resting-state microstate character-
istics and trait variables in similar research (Schiller, Kleinert, 
et al., 2020), 56 participants (α = .05, power = .85, r = .35) 
were needed to detect a significant effect. To account for 
potential dropouts, we recruited 61 healthy right-handed 
men in Freiburg, Germany, all free of current or previous 
history of physical and psychiatric disorders and of alco-
hol or drug abuse. Two participants were excluded 
because of technical problems during EEG measure-
ments, and one participant was excluded because of ran-
dom response patterns in the go/no-go reaction time task, 
resulting in a final sample size of 58 for all analyses. The 
mean age of the sample was 24.09 years (SD = 4.28, 
range = 18–40). Both studies were reviewed and approved 
by the institutional review board of each university and 
carried out with the adequate understanding and informed 
written consent of participants according to the principles 
expressed in the Declaration of Helsinki.

Procedure.  Exclusion criteria were assessed in an online 
screening questionnaire. Prior to the experimental proce-
dure, participants completed the BSCS (Tangney et  al., 
2004) online. They then took part in two laboratory ses-
sions, each run by two trained study assistants. In the first 
session of 90 min, participants were seated in a darkened, 
electrically shielded cabin for the recording of 64-channel 
resting EEG. A chin rest was used, and participants were 
instructed to move as little as possible to minimize arti-
facts. Resting-state EEG was recorded for 5 min using a 
routine protocol consisting of 20-s eyes-open periods fol-
lowed by 40-s eyes-closed periods, repeated five times 
(Schiller et al., 2014, 2019). This procedure was used in 

https://osf.io/sajxv/
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order to minimize fluctuations in the vigilance states of 
participants. Instructions were given via intercom. Next, 
participants completed the CPT (Fallgatter et  al., 1997) 
and other paradigms that are not part of the current study. 
Participants also completed a second experimental ses-
sion, in which interactive paradigms were assessed that 
are evaluated elsewhere. On average, participants received 
monetary compensation of €45.18 (SD = €1.18, range = 
€43.50–48.10).

Measurement of self-reported self-control and a 
neural index of inhibitory control.  We measured 
self-reported self-control using the BSCS (Tangney et al., 
2004), including 13 items on different self-control-related 
domains (e.g., “I am good at resisting temptation”). For 
each item, participants indicate how much the item 
reflects them typically on a 5-point Likert scale (1 = not at 
all to 5 = very much), resulting in a final score of 13 to 65 
points. The BSCS shows good internal consistency (α = 
.83–.85) and test–retest reliability after 3 weeks (r = .87), 
and it predicts a wide range of health-related and social 
outcomes (Tangney et  al., 2004). Additionally, we used 
the CPT as a standard procedure to assess response inhi-
bition using electrophysiological data (Fallgatter et  al., 
1997). The task for participants was to press a response 
button if an “O” was followed by an “X” (O → X; go con-
dition; 40 stimuli) in a series of 400 letters that appeared 
on screen for 200 ms with an interstimulus interval of 
1,650 ms. Response inhibition was required if an “O” was 
not followed by an “X” (e.g., O → F; no-go condition;  
40 stimuli). Other letters were either primers (O; 80 stim-
uli) or distractors (e.g., B; 240 stimuli). A neural index of 
inhibitory control was calculated as the baseline- 
corrected, average event-related P300 response in no-go 
trials in a time frame of coordinated mental activity in the 
brain (for details, see the event-related EEG analysis).

EEG recording and preprocessing.  Continuous rest-
ing-state EEG was recorded in an electrically shielded 
cabin with a sampling rate of 1000 Hz and an online band-
pass filter between 0.1 and 100 Hz using 64 Ag-AgCI active 
electrodes (actiCAP; Brain Products, Munich, Germany) 
arranged in the extended 10-20 system on the scalp. The 
signal was referenced online to an electrode on site FCz, 
and the grounding electrode was placed at AFz. Electro-
oculographic signals were measured by two electrodes at 
the left and right outer canthi (horizontal movement) and 
the left infra- and supraorbital (vertical movement). Pre-
processing of all EEG data was conducted in the Brain 
Vision Analyzer (Version 2.1.0.327, Brain Products). A 
notch filter of 50 Hz and an additional band-pass filter of 
2 to 20 Hz were applied on resting-state EEG data (Michel 
& Koenig, 2018), and an additional band-pass filter of  
0.1 to 30 Hz was applied in case of event-related EEG  

data (Schiller et al., 2016). Eye-movement artifacts were 
removed using a semiautomatic independent component 
analysis. EEG channels heavily affected by artifacts were 
interpolated using neighboring electrodes. Remaining 
artifacts were automatically identified first (maximum 
amplitude ±100 μV) and corrected manually to eliminate 
remaining artifacts. Finally, the signal was rederived to 
average reference.

EEG resting-state microstate analysis.  To obtain indi-
vidual information on the temporal stability of microstate 
networks at rest (i.e., stable mental processing), microstate 
analyses were conducted in EEGLAB (Delorme & Makeig, 
2004) using a plug-in for resting-state microstate analyses 
by Koenig (2017) that works according to standard proce-
dures (Pascual-Marqui et al., 1995). First, resting EEG sig-
nals were down-sampled to 500 Hz and split into segments 
of 2 s (Khanna et al., 2014). Second, EEG data from all 
channels (electric potential field maps) were extracted at 
time points of maximum global field power (GFP), ensur-
ing optimal signal-to-noise ratio (Michel & Koenig, 2018), 
and submitted to an atomize-agglomerate hierarchical-
clustering procedure for the identification of the four most 
predominant microstate maps in each participant (Murray 
et al., 2008). In line with the literature, the polarity of maps 
was ignored as inverted polarities emerge from oscillations 
of the same underlying electrical source generators (Michel 
& Koenig, 2018). Third, maps of all participants were 
included in a second cluster analysis to obtain grand-mean 
microstate maps, which were manually sorted to fit the 
standard order (Michel & Koenig, 2018). Grand-mean 
microstate maps of our data closely resembled the four 
prototypical resting-state microstate types A, B, C, and D 
known from the literature (see Fig. 1; Michel & Koenig, 
2018). Next, individual microstate maps were assigned to 
one of the four grand-mean microstate maps according to 
spatial correlations. Finally, individual maps from GFP 
peaks were assigned to the best-fitting predominant micro-
state map, resulting in a continuous temporal series of 
microstates for each participant from which we extracted 
the average duration of each microstate type in millisec-
onds and the average number of occurrences of each 
microstate type per second. As we were interested in the 
general, type independent temporal stability of resting-
state microstates, duration refers to the duration of all 
four microstate types, and occurrence refers to the num-
ber of occurrences of all four microstate types per sec-
ond. Overall, stable mental processing is reflected by 
longer durations and fewer occurrences of microstates 
across microstate types (as longer durations naturally go 
with fewer occurrences).

EEG event-related analysis.  To obtain a neural index 
of inhibitory control, we first identified event-related 
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potentials (ERPs) in response to the go- and no-go condi-
tions in the CPT (−200 to 1,000 ms after stimulus presen-
tation). ERPs were baseline corrected (baseline: −200 to  
0 ms after stimulus presentation) and averaged. A topo-
graphic-consistency test (Koenig et al., 2011) showed that 
there was no communality in EEG signals across partici-
pants earlier than 50 ms after stimulus onset, which is 
why we chose a time frame of 50 to 1,000 ms after stimu-
lus presentation for further analyses. Next, we used an 
event-related microstate analysis (e.g., Schiller et  al., 
2016) to identify sequences of microstate networks in 
response to the go and no-go conditions of the CPT. For 
this purpose, ERPs were submitted to a modified k-means 
clustering procedure (300 random trials; minimum length 
of 30 ms; conserving the polarity of the maps) in the 
software CARTOOL, using global map dissimilarity as an 
index of topographic difference between maps to iden-
tify the most dominant topographic networks (Brunet 
et al., 2011). Then we generated grand-mean sequences 
of these networks for the go and no-go conditions using 
a topographic-fitting procedure. The ideal number of 
seven microstate networks was identified via a synthetic 
meta-criterion for the best-fitting microstate solution pro-
vided by CARTOOL (Custo et al., 2017; Michel & Koenig, 

2018). In line with previous research, we found a pro-
longed latency of the P300 peak and a more anterior 
activation in the no-go condition compared with the go 
condition (Fallgatter et al., 1997). Notably, we identified 
an additional, more anterior microstate network in the 
no-go condition in a time frame of 300 to 423 ms after 
stimulus presentation, which was not found in the go 
condition (evaluated in detail elsewhere). A neural index 
of inhibitory control was calculated as the baseline-
corrected average amount of electrical activity (i.e., GFP) 
in this time frame of coordinated mental activity follow-
ing response inhibition.

EEG source-localization analysis.  The sLORETA 
(Pascual-Marqui, 2002) solution space, which has been 
used in many EEG studies (e.g., Leota et al., 2021; Nash 
et  al., 2013; Schiller, Domes, & Heinrichs, 2020; Schiller 
et al., 2014), consists of 6.239 voxels (voxel size: 5 × 5 ×  
5 mm) and is restricted to cortical gray matter and hippo-
campi, as defined by the digitized Montreal Neurological 
Institute probability atlas. The sLORETA functional images 
represent the estimated electrical activity at each voxel as 
squared magnitude (i.e., power) of computed current den-
sity (unit: amperes per square meter, or A/m2). sLORETA 

1s0.5s0s 0.25s 0.75s

Duration: 50 ms
Occurrences: 20 /s

Unstable mental
processing

a b c d

Duration: 100 ms
Occurrences: 10 /s

Stable mental
processing

Fig. 1.  Grand-mean microstate maps in Study 1 and exemplary microstate sequences. Grand-mean maps of resting-state microstates 
in Study 1 are shown at the top. Note that the four empirically identified microstate maps closely resemble the prototypical microstate 
maps known from the literature (Michel & Koenig, 2018). Exemplary 1-s sequences of resting-state microstate networks are shown for 
an individual with unstable mental processing (middle sequence) and an individual with stable mental processing (bottom sequence). 
Compared with the individual with unstable mental processing, the individual with stable mental processing shows a longer average 
microstate duration across network types (100 ms vs. 50 ms) and fewer occurrences of microstates per second (10 vs. 20).
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estimates the electrical neuronal activity without assuming 
a predefined number of sources. Our aim was to identify 
the intracerebral sources underlying the association of the 
no-go P300 and stable mental processing. For that pur-
pose, we averaged all scalp maps within the time periods 
covered by the P300 microstate in the go and no-go condi-
tions of the CPT (i.e., 300–423 ms after stimulus onset; 
fixed time window across participants) and then estimated 
the individual sLORETA images. Using the regularization 
method in the sLORETA software, we chose the transfor-
mation matrix with the signal-to-noise set to 10. To reduce 
confounds that have no regional specificity, we normal-
ized sLORETA images for each participant and for each 
condition to a total power of 1 and then log-transformed 
them before statistical analyses.

Statistical analysis.  The goal of the current study was 
to evaluate associations of self-control measures (self-
reported self-control and a neural index of inhibitory 
control) with stable mental processing (i.e., longer dura-
tions and fewer occurrences of microstate networks). We 
calculated two-tailed linear mixed models with micro-
state characteristics (i.e., duration, occurrence) as depen-
dent variables, self-control measures as independent 
variables, and random intercepts across participants (no 
random slope used; see also Atluri et al., 2018). To test 
whether characteristics of specific microstate types (A, B, 
C, or D) showed stronger or weaker associations with 
indices of self-control, we added interactions with dummy 
variables of microstate types to the respective model in a 
next step, allowing for a direct comparison of effects 
between microstate types (see Table S1 in the Supple-
mental Material for a full exemplary analysis). All metric 
variables were z-standardized prior to analyses. Marginal 
R-squared values (R²m) were calculated following the 
procedure recommended by Nakagawa and Schielzeth 
(2013).

In a first set of analyses, we tested for associations 
of self-reported self-control with the duration and 
occurrence of resting-state microstates using the pro-
cedure described above. In a second set of analogous 
analyses, we tested for associations of a neural index 
of inhibitory control with the duration and occurrence 
of microstates. Next, we added both indices of self-
control as joint predictors in one linear mixed model 
to test whether a higher percentage of variance in the 
duration and occurrence of resting-state microstates 
could be explained by combining self-report and neural 
measures of self-control. To test for the reliability of 
our results, we repeated the main analyses using micro-
state characteristics adjusted for the total EEG time 
available (to control for EEG quality; see Table S2 in 
the Supplemental Material). Furthermore, we found 
associations of the mean spectral EEG power of the 

delta, theta, alpha, and beta frequency band with micro-
state duration and self-control indices (see Table S3 in 
the Supplemental Material). Therefore, we controlled 
for power values by adding them as additional predic-
tors to our main analyses. We also tested for the robust-
ness of our findings by excluding outliers with regard 
to microstate characteristics (see Table S4 in the Supple-
mental Material). All analyses yielded highly compa-
rable results. Last, we examined whether source-localized 
brain activity during response inhibition in the CPT was 
associated with the temporal stability of resting-state 
microstates by regressing the sLORETA images of the 
no-go condition on the average duration of resting-state 
microstates. We restricted this voxel-by-voxel regression 
analysis to voxels, which were more active during the 
no-go condition than the go condition (461 voxels 
encompassing mostly frontocingulate regions; p < .01; 
see Table S5 in the Supplemental Material). Correction 
for multiple testing was implemented by means of a 
nonparametric randomization approach, which esti-
mated the empirical probability distributions and the 
corresponding critical probability thresholds (corrected 
for multiple comparisons; r > .37, p < .05).

Results

Descriptive statistics.  As expected, we found consid-
erable heterogeneity of self-control across different mea-
surement domains. Self-reported self-control as measured 
with the BSCS amounted to an average of 37.60 points 
(SD = 6.90, range = 19–51); the neural index of inhibitory 
control as measured by the average amplitude of the 
P300 during response inhibition amounted to an average 
of 5.73 µV (SD = 2.23, range = 1.78–12.64). Self-reported 
self-control was not significantly associated with the neu-
ral index of inhibitory control (r = .11, 95% confidence 
interval [CI] = [−.16, .35], p = .431).

On average, there were 158.88 s of artifact-free rest-
ing-state EEG data available for microstate analyses (SD = 
31.39, range = 54.10–219.00). In close accordance with 
previous findings, the four prototypical microstate types 
accounted for an average of 77.87% of EEG signals (SD = 
3.26, range = 70.40–84.20). See Figure 1 for grand-mean 
microstate maps and exemplary sequences of micro-
states for individuals with stable and unstable mental 
processing (see Table S6 in the Supplemental Material 
available online for descriptive statistics of Study 1). 
Supporting the assumption that people display a general 
tendency for more or less stable mental processing, 
durations (A × B: r = .58, 95% CI = [.38, .73], p < .001; 
A × C: r = .59, 95% CI = [.40, .74], p < .001; A × D: r = 
.60, 95% CI = [.40, .74], p < .001; B × C: r = .64, 95% CI = 
[.45, .77], p < .001; B × D: r = .59, 95% CI = [.40, .74],  
p < .001; C × D: r = .58, 95% CI = [.37, .73], p < .001) 
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and occurrences (A × B: r = .59, 95% CI = [.40, .74], p < 
.001; A × C: r = .39, 95% CI = [.14, .59], p = .003; A × D: 
r = .39, 95% CI = [.15, .59], p = .002; B × C: r = .57, 95% 
CI = [.36, .72], p < .001; B × D: r = .45, 95% CI = [.21, 
.63], p < .001; C × D: r = .54, 95% CI = [.32, .70], p < .001) 
of all four microstate types showed considerable posi-
tive correlations. This confirms that the temporal stabil-
ity of one microstate network naturally goes along with 
the temporal stability of all other microstate networks.

Adding a random intercept across participants to a 
model of microstate duration increased the model fit 
(p < .001), confirming the need for linear mixed model 
analyses. Correspondingly, a high intraclass correlation 
coefficient (ICC) of .600 indicated that durations of the 
four microstate types were correlated, which again 
means that people tend to have higher or lower dura-
tions of microstates across microstate types. The same 
pattern applies for microstate occurrences (increase in 
model fit with p < .001; ICC = .493).

Associations of self-reported self-control and sta-
ble mental processing.  As hypothesized, the duration 
of resting-state microstates was positively related to self-
reported self-control, b = 0.419, 95% CI = [0.230, 0.609], 
SE = 0.095, t(56) = 4.41, p < .001, R2

m = .177 (see Fig. 2). 
To test whether this effect was driven by specific micro-
state types, we tested for an interaction of self-reported 
self-control with microstate types. We found a signifi-
cantly higher model fit after including interactions with 
microstate types to the model (p = .046) because of a 
weaker association of self-reported self-control with the 
duration of type A compared with type B (p = .006). 
However, durations of all four microstate types were 
positively associated with self-reported self-control, sup-
porting our assumption of a type-independent associa-
tion of microstate network stability and self-control (see 
Table S7 in the Supplemental Material for correlations). 
Furthermore, the occurrence of resting-state microstates 
was negatively related to self-reported self-control, b = 
−0.370, 95% CI = [−0.552, −0.188], SE = 0.091, t(56) = 
−4.05, p < .001, R2

m = .137 (see Fig. 2). Again, adding 
interactions with microstate types to the model resulted 
in a higher model fit (p = .012), revealing a stronger 
(negative) association of self-reported self-control with 
the occurrence of type A compared with types B (p = 
.002), C (p = .016), and D (p = .018). However, occur-
rences of all four microstate types were negatively asso-
ciated with self-reported self-control, again demonstrating 
the type-independent association of microstate network 
stability and self-control. Adding to the reliability of our 
findings, effects were robust when controlling for EEG 
quality (see Table S2 in the Supplemental Material) and 
when removing outliers with regard to microstate char-
acteristics (see Table S4 in the Supplemental Material). 

Taken together, these results suggest that self-controlled 
individuals show a higher stability of mental processing 
in the brain when no task is at hand.

Associations of a neural index of inhibitory con-
trol and stable mental processing.  In a second set of 
analyses, we used a neural index of inhibitory control 
(amount of electrical activity in the time frame of the 
no-go P300, obtained from the CPT) to predict the dura-
tion of microstates in a mixed model. As expected, the 
neural index of inhibitory control was positively related 
to microstate duration, b = 0.265, 95% CI = [0.056, 0.473], 
SE = 0.104, t(56) = 2.54, p = .014, R2

m = .070 (see Fig. 2). 
All microstate types contributed equally to this effect, as 
there was no increased model-fit testing for an interac-
tion with microstate types (p = .166). Furthermore, the 
neural index of inhibitory control was negatively related 
to microstate occurrence, b = −0.241, 95% CI = [−0.438, 
−0.045], SE = 0.098, t(56) = −2.45, p = .017, R2

m = .059 (see 
Fig. 2), indicating that participants with fewer occur-
rences of microstates show an increased electrophysio-
logical response-inhibition capacity. Again, all microstate 
types contributed equally to this effect, as there was no 
increased model-fit testing for an interaction with micro-
state types (p = .096). These findings suggest that an 
increased P300 response during response inhibition is 
associated with stable mental processing (see Fig. 2; see 
Table S7 in the Supplemental Material for correlations; 
see Table S4 for outlier analyses demonstrating the 
robustness of these associations).

To test for their combined predictive power for stable 
mental processing, we used self-reported self-control 
and the neural index of inhibitory control as joint pre-
dictors for the duration (and occurrence) of microstates 
in multiple-predictor linear mixed models. Both mea-
sures of self-control showed incremental validity on top 
of each other for the prediction of the duration of 
microstates—self-reported self-control: b = 0.396, 
95% CI = [0.214, 0.578], SE = 0.091, t(55) = 4.32, p < .001; 
neural index of inhibitory control: b = 0.223, 95% CI = 
[0.041, 0.404], SE = 0.091, t(55) = 2.44, p = .018, R2

m = 
.226—and the occurrence of microstates—self-reported 
self-control: b = −0.348, 95% CI = [−0.523, −0.173], SE = 
0.088, t(55) = −3.96, p < .001; neural index of inhibitory 
control: b = −0.205, 95% CI = [−0.380, −0.030], SE = 
0.088, t(55) = −2.33, p = .024, R2

m = .179. Compared 
with single-predictor models using only self-reported 
self-control as a predictor, adding the neural index of 
inhibitory control increased the amount of variance 
explained in microstate duration by 4.6% (from 17.7% 
to 22.3%) and in microstate occurrence by 4.2% (from 
13.7% to 17.9%). These results illustrate independent 
associations of stable mental processing with both per-
ceptions and neural processes related to self-control.
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Associations of control-related brain areas and 
stable mental processing.  We used sLORETA (Pascual- 
Marqui, 2002) to identify neural sources of inhibitory 
control during the CPT (i.e., voxels that were more active 

during the P300 in the no-go condition compared to the 
P300 in the go condition) that were associated with task-
independent stable mental processing. We identified a 
significant positive correlation of current source density 

50

60

70

80

90

100

20 30 40 50 60 20 30 40 50 60
Self-Reported Self-Control

M
ea

n 
M

ic
ro

st
at

e 
Du

ra
tio

n 
(m

s)

10

12

14

16

18

Self-Reported Self-Control

M
ea

n 
M

ic
ro

st
at

e 
Oc

cu
rr

en
ce

 (/
se

co
nd

)

60

70

80

90

100

2 4 6 8 10 12 2 4 6 8 10 12
Neural Index of Inhibitory Control (µV)

M
ea

n 
M

ic
ro

st
at

e 
Du

ra
tio

n 
(m

s)

10

12

14

16

18

Neural Index of Inhibitory Control (µV)

M
ea

n 
M

ic
ro

st
at

e 
Oc

cu
rr

en
ce

 (/
se

co
nd

)

b  = .419 
p  < .001

R 2
m = .177

b  = .265
p = .014

R 2
m = .070

b  = −.370
p  < .001
R 2

m = .137

b  = −.241
p = .017
R 2

m = .059

 

 
 

 

 
 

 

Fig. 2.  Associations of stable mental processing with self-reported self-control and a neural index of inhibitory control. The 
scatterplot at the top left illustrates the association of the mean microstate duration across types A through D with self-reported 
self-control (Brief Self-Control Scale; Tangney et al., 2004). The scatterplot at the top right illustrates the association of the mean 
microstate occurrence across types A through D with self-reported self-control. The scatterplot at the bottom left illustrates the 
association of the mean microstate duration with the neural index of inhibitory control as measured by the amount of electrical 
activity in the time frame of the P300 (GFP averaged over 300–423 ms after stimulus onset) in the no-go condition of the Continu-
ous Performance Test (Fallgatter et al., 1997). The scatterplot at the bottom right illustrates the association of the mean microstate 
occurrence with the neural index of inhibitory control. All plots include 95% confidence intervals and coefficients resulting from 
mixed model analyses.
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estimates originating from the left insula and inferior 
frontal gyrus (14 voxels, p < .05, corrected; see Fig. 3; see 
also Table S5 in the Supplemental Material) and the mean 
duration of microstates (r = .42, 95% CI = [.187, .616], p < 
.001), indicating that people with stronger activity in 
these regions during response inhibition show more sta-
ble mental processing at rest (there were no significant 
associations with the mean occurrence of microstates).

Study 2

Method

Participants.  For a preregistered replication analysis in 
Study 2, we used an already collected, substantially larger 
sample of 110 first-year psychology students recruited at 
the University of Alberta, Canada. Nine participants were 
excluded because of poor-quality resting EEG record-
ings, resulting in a final sample size of 101 for all analy-
ses (58 females, 43 males). The mean age was 19.76 years 
(SD = 1.62, range = 17–26). Gender differences were not 
further considered in Study 2, as females and males did 
not show any significant differences (see Table S8 in the 
Supplemental Material).

Procedure.  Participants were equipped with a 64-chan-
nel EEG system (Brain Products, Munich, Germany). All 
tasks were completed in an electrically shielded and 
noise-shielded cabin on a computer using Presentation 
(Version 18.0, Neurobehavioral Systems, Berkeley, CA). 
First, demographic information and several question-
naires were collected, including the BSCS. Second, a 
4-min resting EEG was recorded (a 60-s eyes-open period 
followed by a 60-s eyes-closed period, repeated two 
times in total). Again, only eyes-closed periods were used 
for further EEG analysis (2 min). Participants were then 
randomly assigned to one of two experimental condi-
tions that are unrelated to the current study (anxiety or 
control). Note that controlling for experimental condi-
tions had no impact on the main results of this study (see 
Table S9 in the Supplemental Material). Afterward, par-
ticipants completed two tasks that will be evaluated else-
where, followed by the BART for the measurement of 
risk-taking behavior. Finally, participants were thanked 
for their time and compensated with class credit. The 
average duration of the experiment was 110 min.

Measurement of self-reported self-control and risk-
taking behavior.  Self-reported self-control was measured 
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Fig. 3.  Association of mean microstate duration with source-localized brain activity. On the left, locations of the 
14 voxels that showed significant correlations are indicated in red (corrected at p < .05; ten of these voxels were 
located in the left insula, Brodmann’s area [BA] 13; peak voxel at Montreal Neurological Institute [MNI] coordinates 
x = −40, y = 15, z = 5; four voxels were located in the left inferior frontal gyrus (IFG), BAs 44, 45, and 47; peak 
voxel at MNI coordinates x = −40, y = 20, z = 5). On the right, the scatterplot illustrates the association between 
mean microstate duration and current density (global field power [GFP] channel) in these 14 voxels during the 
no-go condition of the Continuous Performance Test (demonstrating the average correlation across all voxels that 
exceeded the corrected p threshold in the same cluster; the plot includes a 95% confidence interval and coefficients 
resulting from a Pearson’s correlation analysis).
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with the BSCS that we used in Study 1 (Tangney et  al., 
2004). Risk-taking behavior was measured with the BART, 
which is associated with self-control deficiencies, impulsiv-
ity, and sensation seeking, as well as addictive, risky, and 
unhealthy behaviors (Lejuez et al., 2002). In the BART, par-
ticipants were informed that they could increase their num-
ber of ballots in a lottery (price of $100) by performing well 
in a balloon-pumping game. The task was to press a button 
to pump up balloons (20 in total) that would explode after 
an unknown and variable number of pumps (explosion 
threshold; 15 pumps on average). Balloons were inflated 
more and more with every pump; each pump earned one 
ballot but also brought the balloon closer to the explosion 
threshold. Participants earned no ballots for exploded bal-
loons. In each trial, they could stop pumping at any time 
in order to retain the earned ballots and continue with 
the next trial. An individual score of risk-taking behavior 
(RT) was computed as (RT = average pumps × (explo-
sions + 1)/total number of trials). Thus, RT increases with 
a higher average number of pumps and explosions, mak-
ing it a more sensitive and valid measure of risk-taking 
compared with traditional measures that focus on the 
number of either pumps or explosions (also see Leota 
et al., 2021). Following a reviewer’s suggestion, we also 
checked whether our findings remained robust when 
using an alternative risk-taking score, as originally pro-
posed by Lejuez et  al., 2002. All reported associations 
remained significant—association of the alternative risk-
taking measure with microstate duration: b = −0.215, 95% 
CI = [−0.388, −0.042], SE = 0.088, t(99) = −2.45, p = .016, 
R²m = .047; association of the alternative risk-taking mea-
sure with microstate occurrence: b = 0.198, 95% CI = 
[0.026, 0.370], SE = 0.087, t(99) = 2.28, p = .025, R²m = .040.

EEG recording, preprocessing, and resting-state 
microstate analysis.  In our Canadian sample, continu-
ous resting-state EEG was recorded in an electrically 
shielded cabin with a sampling rate of 500 Hz and an 
online band-pass filter between 0.1 and 100 Hz using 64 
Ag-AgCI active electrodes (actiCHamp; Brain Products, 
Munich, Germany) arranged in the 10-10 system on the 
scalp. The signal was referenced online to an electrode 
on site TP9 over the left mastoid. EEG preprocessing 
steps and the resting-state microstate analysis were con-
ducted in the same way as in Study 1.

Statistical analysis.  Again, we calculated linear mixed 
models with microstate characteristics (i.e., duration, 
occurrence) as dependent variables, self-control and/or 
risk-taking behavior as independent variables (all vari-
ables z-standardized), and a random intercept across par-
ticipants (no random slope used). Again, we added 
interaction terms with dummy variables of microstate 
types to the respective model in a next step, allowing for 
a direct comparison of effects between microstate types. 

First, we aimed to replicate a positive association of self-
reported self-control with microstate duration and a neg-
ative association with microstate occurrence. Second, we 
applied a conceptual extension by testing for a negative 
association of risk-taking behavior with microstate dura-
tion and a positive association with microstate occur-
rence. Finally, we added both self-reported self-control 
and risk-taking behavior as joint predictors in multiple 
predictor linear mixed models to test whether a higher 
percentage of variance in the duration and occurrence of 
resting-state microstates can be explained by combining 
self-report and behavioral measures of self-control.

Results

Descriptive statistics.  Again, we found high hetero-
geneity of self-control across different measurement 
domains. Self-reported self-control as measured with the 
BSCS amounted to an average of 39.12 points (SD = 6.90, 
range = 18–59), and risk-taking behavior as measured by 
the BART amounted to an average of 3.91 points (SD = 
2.73, range = 0.13–12.68). Self-reported self-control was 
not significantly associated with risk-taking behavior (r = 
−.001, 95% CI = [−.196, .195], p = .996).

On average, there were 105.64 s of artifact-free rest-
ing-state EEG data available for microstate analyses (SD = 
9.30, range = 50.94–112.70), and the four prototypical 
microstate types accounted for an average of 74.71% of 
EEG signals (SD = 4.78, range = 55.93–84.43; see Tables 
S10 and S11 in the Supplemental Material for grand-
mean microstate maps and detailed descriptive statistics 
of Study 2).

Replication analysis: associations of self-reported 
self-control and stable mental processing.  As hypoth
esized via our preregistered analysis plan, a positive 
association of self-reported self-control with microstate 
duration was replicated, albeit with a more modest 
effect size than in Study 1, b = 0.179, 95% CI = [.003, 
.354], SE = .089, t(99) = 2.02, p = .046, R2

m = .032 (see 
Fig. 4). To test whether this effect was driven by specific 
microstate types, we tested for an interaction of self-
reported self-control with microstate types. We did not 
find a significantly higher model fit after including inter-
actions with microstate types in the model (p = .090), 
illustrating that all microstate types contributed to the 
effect (see Table S12 in the Supplemental Material for 
correlations). In an analogous analysis, a negative asso-
ciation of self-reported self-control with microstate 
occurrence was not replicated, b = −0.140, 95% CI = 
[−0.315, 0.035], SE = 0.088, t(99) = 1.59, p = .116, R2

m = 
.020 (see Fig. 4). Critically, this association was signifi-
cant, b = −0.171, 95% CI = [−0.302, −0.039], SE = 0.066, 
t(95) = −2.57, p = .012, R2

m = .052, after removing outliers 
with regard to microstate characteristics (see Table S4 in 
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the Supplemental Material). Adding interactions with 
microstate types to the model did not result in a higher 
model fit (p = .290). Overall, Study 2 provided somewhat 
mixed evidence regarding the association of self-reported 
self-control and stable mental processing compared with 
Study 1. However, outlier analyses support a replication 
of Study 1’s findings.

Conceptual extension: associations of risk-taking 
behavior and stable mental processing.  As a con-
ceptual extension, we tested for associations of stable 
mental processing with risk-taking behavior. As hypoth-
esized, risk-taking behavior was negatively related to 
microstate duration, b = −0.228, 95% CI = [−0.400, −0.055], 
SE = 0.087, t(99) = −2.61, p = .010, R2

m = .052 (see Fig. 4). 
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Fig. 4.  Associations of stable mental processing with self-reported self-control and risk-taking behavior. The scatterplot at 
the top left illustrates the association of the mean microstate duration across types A through D with self-reported self-control 
(Brief Self-Control Scale; Tangney et al., 2004). The scatterplot at the top right illustrates the association of the mean microstate 
occurrence across types A through D with self-reported self-control. The scatterplot at the bottom left illustrates the association 
of the mean microstate duration with risk-taking behavior as measured in the Balloon Analogue Risk Task (Lejuez et al., 2002). 
The scatterplot at the bottom right illustrates the association of the mean microstate occurrence with risk-taking behavior. All 
plots include 95% confidence intervals and coefficients resulting from mixed model analyses.
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There was no higher model fit after including interactions 
with microstate types to the model (p = .389). Further-
more, risk-taking behavior was positively associated with 
microstate occurrence, b = 0.220, 95% CI = [0.049, 0.391], 
SE = 0.086, t(99) = 2.55, p = .012, R2

m = .049 (see Fig. 4), 
indicating that the positive association of the temporal 
stability of resting EEG networks with risk-taking behavior 
is driven by both the duration and the occurrence of 
microstates (see Table S12 for correlations; see Table S4 
for outlier analyses demonstrating the robustness of these 
associations). Adding interactions with microstate types to 
the model did not result in a higher model fit (p = .156).

Next, we used self-reported self-control and risk-
taking behavior as joint predictors for the duration and 
occurrence of resting-state microstates in multiple pre-
dictor linear mixed models. Both predictors showed 
incremental validity on top of each other for the predic-
tion of microstate duration—self-reported self-control: 
b = 0.179, 95% CI = [0.009, 0.348], SE = 0.086, t(98) = 
2.08, p = .040; risk-taking behavior: b = −0.228, 95% 
CI = [−0.397, −0.059], SE = 0.085, t(98) = −2.67, p = .009, 
R2

m = .084. Risk-taking behavior showed incremental 
validity on top of self-reported self-control for the pre-
diction of microstate occurrence—self-reported self-
control: b = −0.140, 95% CI = [−0.309, 0.029], SE = 0.086, 
t(98) = −1.64, p = .105; risk-taking behavior: b = 0.220, 
95% CI = [0.051, 0.388], SE = 0.085, t(98) = 2.58, p = .012, 
R2

m = .068. Compared with single-predictor models 
using only self-reported self-control as a predictor, add-
ing risk-taking behavior increased the amount of vari-
ance explained in microstate duration by 5.2% (from 
3.2% to 8.4%) and in microstate occurrence by 4.9% 
(from 1.9% to 6.8%). These results illustrate indepen-
dent associations of stable mental processing with both 
perceptions and behavioral preferences related to 
self-control.

Association of self-reported self-control and stable 
mental processing across both studies.  In a final set 
of analyses, we combined the samples of Study 1 and 
Study 2 (N = 159) to identify the overall association of 
stable mental processing with self-reported self-control. 
Across samples, self-reported self-control was positively 
related to microstate duration, b = 0.266, 95% CI = [0.135, 
0.398], t(157) = 3.99, p < .001, R2

m = .071, and negatively 
related to microstate occurrence, b = −0.224, 95% CI = 
[−0.353, −0.094], t(157) = 3.40, p < .001, R2

m = .050 (see 
Table S4 for outlier analyses demonstrating the robust-
ness of these associations). There were no interactions 
with microstate types (prediction of microstate duration: 
p = .975; prediction of microstate occurrence: p = .774), 
indicating that all four types—A, B, C, and D—contrib-
uted equally to both effects (correlations of self-reported 

self-control with the duration of type A: r = .265, 95%  
CI = [.114, .404], p < .001; type B: r = .283, 95% CI = [.133, 
.420], p < .001; type C: r = .256, 95% CI = [.104, .396], p = 
.001; and type D: r = .261, 95% CI = [.110, .400], p = .001; 
correlations of self-control with the occurrence of type A: 
r = −.266, 95% CI = [−.405, −.115], p < .001; type B: r = 
−.204, 95% CI = [−.349, −.050], p = .010; type C: r = −.208, 
95% CI = [−.352, −.054], p = .009; and type D: r = −.216, 
95% CI = [−.360, −.062], p = .006).

Controlling for the frequency content of the EEG 
data.  Following a reviewer’s suggestion, we analyzed 
associations of the mean spectral EEG power of the delta, 
theta, alpha, and beta frequency bands with microstate 
duration and the three indices of self-control. As several 
EEG power values were associated with microstate dura-
tion and self-control indices (see Table S3 in the Supple-
mental Material for details), we recalculated our main 
analyses including EEG power values as additional pre-
dictors. Across samples, the association of self-reported 
self-control with microstate duration remained signifi-
cant, b = 0.227, 95% CI = [0.099, 0.355], SE = 0.065, t(153) = 
3.47, p < .001. In Study 1, the association of the neural 
index of inhibitory control with microstate duration 
remained significant, b = 0.225, 95% CI = [0.052, 0.397], 
SE = 0.087, t(52) = 2.57, p = .013. In Study 2, the associa-
tion of risk-taking behavior with microstate duration 
remained significant, b = −0.215, 95% CI = [−0.385, −0.044], 
SE = 0.086, t(95) = −2.48, p = .015.

Discussion

Self-control is commonly defined as the ability to inhibit 
impulses in order to achieve long-term goals. However, 
recent research has challenged the assumption that self-
control is all about inhibition. On the basis of both a 
theoretical account of self-control and recent research, 
we hypothesized that self-control is associated with 
stable mental processing as indicated by fewer but 
longer-lasting mental-processing steps. To test this 
hypothesis, we assessed mental-processing stability by 
means of resting EEG microstates analysis, which 
allowed us to determine individual durations and occur-
rences of mental-processing steps when no task is at 
hand. Across two laboratories and two independent 
samples, we found that stable mental processing was 
associated with self-report, neural, and behavioral mea-
sures of self-control.

Our first exploratory study demonstrated strong 
associations of stable mental processing with self-
reported self-control and a neural measure of inhibitory 
control (Study 1: N = 58 males). Following a preregis-
tered analysis plan, our second study (Study 2: N = 101; 
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58 females) replicated associations of stable mental 
processing with self-reported self-control, albeit the 
effect sizes were more modest than in Study 1, and the 
association of microstate occurrence and self-reported 
self-control was significant only after removing outliers. 
As a conceptual extension, Study 2 revealed inverse 
associations of stable mental processing with risk-taking 
behavior. These analyses added to the robustness of 
our findings yet also suggested that the first study may 
have somewhat overestimated the true effect size in the 
general population.

Our findings resonate with recent expansions of the 
concept of self-control beyond the inhibition of 
impulses (Fujita, 2011; Inzlicht et al., 2021). Self-control 
has been defined more broadly as the process of 
advancing abstract, distal motives (e.g., the desire to 
lose weight) over conflicting, concrete, and proximal 
motives (e.g., eating high-calorie foods). Though 
impulse inhibition is one important means used to solve 
this conflict, there might be other effective ways to do 
so. For example, one can proactively regulate the avail-
ability of temptations or cognitively reappraise the 
experience of temptations. One could speculate that 
individuals with stable mental processing are more effi-
cient in achieving long-term goals because they have 
more stable mental processes with fewer interruptions 
by distracting impulses (see also research on an “imple-
mental mindset,” which promotes goal achievement by 
reducing attention to task-irrelevant stimuli without the 
need for conscious monitoring; Fujita, 2011). This idea 
fits with recent work suggesting that the biggest prob-
lem in goal achievement is not lacking control to 
resolve conflict but rather the presence of conflicting 
motives to begin with (Inzlicht et al., 2021). Thus, peo-
ple high in self-control may simply experience fewer 
interrupting impulses rather than only being better at 
inhibiting them. Indeed, recent research has observed 
less real-time conflict in individuals who are more suc-
cessful at self-control (Stillman et al., 2017).

Alongside the conceptual debate on the nature of 
self-control, there is an ongoing discussion on how to 
best measure this construct. Recent meta-analytic evi-
dence demonstrates that different self-control measures 
often fail to correlate with each other (Wennerhold & 
Friese, 2020). In line with this, self-reported self-control 
was not significantly correlated with neural or behav-
ioral self-control measures in our study. Conversely, 
the temporal stability of resting EEG microstates was 
significantly associated with self-report, neural, and 
behavioral self-control measures. Thus, stable mental 
processing might represent a domain-general feature of 
self-control, capturing common variance of existing self-
control measures. Note that the low convergent validity 

of existing self-control measures has been attributed to 
its task- and domain-specific measurement approach 
(Wennerhold & Friese, 2020). In contrast, stable mental 
processing as identified by resting EEG microstate analy-
sis constitutes a task- and domain-independent measure, 
possibly contributing to its robust associations with vari-
ous (domain-specific) self-control measures.

In sum, relying on EEG microstate analysis, we pro-
vide evidence that self-control is characterized by 
stable mental processing as indicated by fewer but 
longer-lasting mental-processing steps at rest. This 
study demonstrates that analyzing the temporal dynam-
ics of task-independent brain activity can inform 
behavioral and cognitive sciences on the nature of the 
human mind. It also raises questions ripe for future 
research. Do our findings hold in larger sample sizes 
with distinct characteristics, or are they limited to col-
lege students? Do individuals notice their degree of 
stable mental processing? Can we learn to engage in 
stable mental processing? Do stable mental processes 
at rest relate to stable mental processes while executing 
self-control? Following up on these questions has the 
potential to shed light on why some are better than 
others in implementing self-control and living a health-
ier and happier life.
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