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Abstract
The error-speed effect describes the observation that the speed of recognition errors in a first binary recognition task predicts 
the response accuracy in a subsequent two-alternative forced-choice (2AFC) task that comprises the erroneously judged 
items of the first task. So far, the effect has been primarily explained by the assumption that some error responses result from 
misleading memory evidence. However, it is also possible that the effect arises because participants remember and use their 
response times from the binary task to solve the 2AFC task. Furthermore, the phenomenon is quite new and its robustness 
or generalizability across other recognition tasks (e.g., a confidence-rating task) remains to be demonstrated. The aim of 
the present study is to address these limitations by introducing a new variant of the error-speed effect, replacing the 2AFC 
task with a confidence-rating task (Experiment 1), and by reversing task order (Experiment 2) to test whether participants 
employ a response-time strategy. In both experiments, we collected data using a sequential probability ratio t-test procedure 
and found evidence in favor of the hypothesis that the speed of binary recognition errors predicts confidence ratings for the 
same stimulus. These results attest to the robustness and generalizability of the error-speed effect and reveal that at least 
some errors must be due to systematically misleading memory evidence.
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Introduction

The error-speed effect refers to a relatively new phenomenon 
in the recognition-memory literature that has been inter-
preted primarily as evidence for the existence of system-
atically misleading memory evidence, namely memory evi-
dence in favor of the incorrect response (Starns et al., 2018). 
The effect arises when participants are asked to complete 
both a binary and a two-alternative forced-choice (2AFC) 
recognition task comprising the same stimuli. In a binary 
recognition task, participants have to categorize presented 
stimuli either as target (i.e., a stimulus that has been studied 
previously) or as lure (i.e., a completely new stimulus). In a 
2AFC task, on the other hand, a pair of stimuli is presented 
in each trial – a target and a lure – and participants have to 

identify the target. When those two tasks are completed in 
succession, it has been observed that the speed of errors in a 
binary recognition task predicts the recognition accuracy in 
a subsequent 2AFC trial containing the erroneously judged 
stimulus of the first task. More precisely, fast errors in the 
binary recognition task are associated with lower accuracy 
in the 2AFC task than slow errors depicting the error-speed 
effect (Starns et al., 2018; Voormann et al., 2021, 2024).

Theoretical accounts allowing for incorrect responses 
to targets and lures based on misleading memory evidence 
typically predict an error-speed effect. For example, con-
tinuous dynamic recognition models, such as the diffusion 
model (Ratcliff, 1978), postulate that the speed of recog-
nition decisions depends on the strength of the underlying 
memory signal, with more decisive memory signals eliciting 
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faster responses (Ratcliff, 2014).1 This holds for both correct 
and incorrect responses. The same principle applies to the 
accuracy of responses. Here, for example, a strongly mis-
leading memory signal increases the probability of an incor-
rect response (Ratcliff et al., 2015). Considering the two 
above-mentioned recognition tasks performed in sequence, 
this implies that the more misleading the memory signal 
elicited by a stimulus, the faster a stimulus is erroneously 
categorized in the binary recognition task and the more 
likely is an incorrect response given to a trial of the 2AFC 
task that includes the same stimulus.

Besides continuous models, some discrete-state models 
of recognition memory that incorporate a pathway towards 
incorrect detection, such as the two-low threshold-model 
(2LTM; Starns, 2021; Starns et al., 2018; see Fig. 1), also 
predict the error-speed effect. Following the core idea behind 
response-time-extended multinomial processing tree mod-
els (Klauer & Kellen, 2018), response speed is determined 
by the sum of process times associated with different dis-
crete states that contribute to a response. Thus, assuming 
that responses out of an incorrect detection state are faster 
than incorrect guesses (Heck & Erdfelder, 2016; Province & 
Rouder, 2012), faster errors should go along with a higher 
probability of an incorrect response in a subsequent 2AFC 
task. However, discrete-state models that do not incorporate 
the possibility of incorrect detection, such as the two-high 
threshold-model (2HTM; Snodgrass & Corwin, 1988), can-
not predict this pattern of results. This is because of assumed 
complete loss of information when entering a discrete state 
(Riefer & Batchelder, 1988). In the latter model, errors occur 
solely due to incorrect guessing decisions, and thus, the 
speed of binary recognition errors should not affect response 
accuracy since all errors reflect the same underlying process 
(see Fig. 1). Based on this theoretical rationale, the error-
speed effect has mostly been considered as evidence for the 
existence of misleading memory evidence.

However, an alternative explanation for the error-speed 
effect was already discussed in the original manuscript by 
Starns et al. (2018), namely that participants notice their 
previous response times (RTs) from the binary task and use 
their knowledge about them to inform their decisions in 
the 2AFC task. For example, in cases where both items of 

the 2AFC task elicit an “old” response, participants might 
remember the item with the faster RT in the binary recog-
nition task and then select this item as target in the 2AFC 
task. Although previous studies of the error-speed effect 
ruled out some alternative explanations (Voormann et al., 
2021, 2024), none of them explicitly tested the RT-strategy 
hypothesis as all prior studies asked for responses in the 
binary recognition task first and only afterwards presented 
the 2AFC task. Recently, Akan et al. (2023) and Yüvrük 
et al. (2023) observed an error-speed effect for targets in a 
trial-by-trial paradigm in which each 2AFC trial presented 
an item from the preceding trial of the binary task along with 
an item not previously considered during test. This rules out 
certain versions of the RT-strategy hypothesis capitalizing 
on a comparison between the RTs associated with previous 
responses to the two presented items, but leaves open the 
possibility of RT strategies based on the RT of the (one) 
item previously responded to. For example, participants 
might still prefer to choose the item they remember hav-
ing responded to fast in order to resolve uncertainties in the 
2AFC task.

In the present study, we therefore not only aimed to 
replicate the error-speed effect using confidence ratings in 
Experiment 1 to demonstrate its independence of the spe-
cific combination of tasks, but we also reversed task order 
in Experiment 2; that is, we presented the confidence-rating 
task first and the binary recognition task afterwards. In such 
a case, participants can no longer rely on their knowledge 
about the response speed in the binary task when giving 
their confidence ratings, as binary responses are given only 
after the confidence-rating task. Thus, if reversing task 
order eliminates the error-speed effect, it is quite likely that 
its existence is rooted in some kind of RT-based strategy. 
However, if the error-speed effect still occurs with reversed 
task order it seems more likely that the error-speed effect is 
indeed driven by misleading memory evidence.

The error‑speed effect 
with confidence‑rating tasks

Asking for confidence ratings is a very popular recognition 
memory task (e.g., Dube et al., 2012; Province & Rouder, 
2012; Ratcliff et al., 1994). In such a task, participants indi-
cate how certain they are that a presented stimulus is a target 
(or a lure) on a scale that could, for instance, range from 
“most certainly new” to “most certainly old,” and different 
responses are interpreted to reflect variability in the underly-
ing memory evidence. Previous studies have demonstrated 
that when confidence ratings are provided immediately after 
a binary decision, confidence ratings and RTs in binary 
tasks are correlated (e.g., Weidemann & Kahana, 2016). 

1 Please note, whenever we refer to fast errors, we mean errors that 
are faster than the participants’ median error RTs. They do not refer 
to what is meant by fast errors in the diffusion model literature, 
namely extremely fast error responses that solely result from response 
bias and sampling noise; and thus, they are not predictive of the 
memory performance in another memory task. Those latter errors 
are also sometimes called avoidable errors (Starns et  al., 2018), as 
they would elicit a correct response if more memory evidence was 
sampled. However, errors that we focus on are so-called unavoid-
able errors. Their idiosyncratic drift rates point towards the incorrect 
response boundary and thus an incorrect response would have also 
occurred if more memory evidence had been sampled.
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Therefore, confidence-rating tasks seem a natural choice if 
one seeks to replace the original 2AFC task.

When replacing the 2AFC task in the error-speed para-
digm with a confidence-rating task, one would expect to 
find a pattern of effects that is analogous to the error-speed 
effect. Whereas for the RTs of the binary recognition task 
the principles of the classical diffusion model still apply, 
this model is not capable of taking confidence ratings into 

account. However, there is an adapted version of the diffu-
sion model for confidence ratings known as RTCON2 (Rat-
cliff & Starns, 2013; see also Ratcliff & Starns, 2009, for 
a previous version of the model). Under the assumptions 
of RTCON2, each confidence response has its own accu-
mulation process with response boundaries that can differ 
across accumulators but are constant over trials (Ratcliff & 
Starns, 2013). More importantly, the accumulation rate of 

Fig. 1  Depiction of the two-high threshold-model (upper panel) and 
the two-low threshold-model (lower panel) for a recognition task 
including confidence ratings. Note. The models represent the paths to 
certain response categories and confidence ratings for the two stimu-

lus types (i.e., target and lure). Discrete latent states are depicted in 
rounded boxes with the conditional probability to enter each state 
denoted on the respective path. Dashed lines indicate the differences 
between the two-high and the two-low threshold-model
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each accumulator depends on the memory evidence elicited 
by a specific stimulus. However, in contrast to binary tasks, 
in which memory evidence is often considered to be a single 
fixed value, each stimulus gives rise to a distribution on an 
underlying strength-of-evidence scale: the so-called match 
distribution (see Fig. 2). Response criteria are placed on that 
scale demarcating confidence intervals. The area under the 
curve of this match distribution in a certain confidence inter-
val in turn defines the accumulation rate for the associated 
accumulator. Therefore, a target with a very high memory 
evidence should elicit a match distribution that is shifted 
towards a “most certainly old” response, which increases the 
accumulation rate (and consequently the probability) for a 
“most certainly old” response (Fig. 2B) compared to a target 
with a low memory evidence (Fig. 2A). On the other hand, a 
target with low memory evidence would elicit a match dis-
tribution that allocates more probability mass towards a new 
response and will therefore more likely lead to an erroneous 
“rather new” response.

Under the assumption of stable response criteria and con-
stant boundaries for the accumulation process across trials, it 

follows that the more the match distribution of a certain item 
is shifted towards the low or high end of the latent evidence 
scale, the higher the likelihood of confidence ratings in the 
corresponding direction for that item (Ratcliff & Starns, 2013). 
Returning to the basis of the error-speed effect, this means that 
the faster an erroneous response in the binary recognition task, 
the more misleading its memory evidence (based on the pre-
dictions of the diffusion model). According to the RTCON2, 
this should lead to a higher confidence towards the incorrect 
response (cf. Van Zandt, 2000, for another dynamic confidence 
model that predicts the same outcome).

There also exist extensions of discrete-state models that 
allow one to account for confidence ratings. Here, differ-
ent confidence responses arise from the final discrete state 
reached in each case (Bröder et al., 2013; see also Klauer 
& Kellen, 2010). Again, such responses are independent of 
the underlying amount of memory evidence in discrete-state 
models. Instead, they are only contingent on the discrete 
state they result from (see Fig. 1). Crucially, however, the 
likelihood of entering the different discrete states depends 
on the memory evidence elicited by a stimulus. This leads 
to analogous predictions as for the classic error-speed effect: 
Only models that include the possibility for incorrect detec-
tion (such as the 2LTM) can explain a correlation between 
the response speed in a first recognition task and the confi-
dence response given in a second recognition task. Impor-
tantly, those models consider two different mental states 
that can result in an erroneous response (viz. an uncertainty 
state and an incorrect detection state), and the respective 
pathways may contribute in different proportions to fast and 
slow errors. However, models that do not allow for incorrect 
detection states and instead assume that all errors stem from 
a single uncertainty state (as, e.g., the 2HTM) cannot predict 
a relationship between response speed in a first recognition 
task and confidence in a second recognition task (but see 
Voormann et al., 2024).

As the reviewed theories predict an effect similar to 
the error-speed effect when replacing the 2AFC task by a 
confidence-rating task, our first experiment tests whether 
the speed of erroneous recognition decisions in a binary 
recognition task predicts the confidence given to that same 
stimulus in a subsequent confidence-rating task. More pre-
cisely, we expect fast-error stimuli to be associated with, 
on average, more confidence towards the incorrect response 
compared to slow-error stimuli. If so, it seems more likely 
that the error-speed effect reflects core cognitive mecha-
nisms rather than being a mere byproduct of using a specific 
combination of tasks. This would challenge models such as 
the 2HTM that do not allow for systematically misleading 
memory evidence, and would endorse models that allow for 
such evidence.

Fig. 2  Depiction of the RTCON2 model for an item eliciting low 
memory evidence (panel A) and an item with high memory evidence 
(panel B). Note. Vertical lines represent the position of the confidence 
criteria whereas the drift rate of the accumulator for a specific confi-
dence response is determined by the area under the curve of the cor-
responding confidence interval, illustrated in the figure by the grey 
area for the “most certainly old”-response
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The error‑speed effect with reversed task 
order

Replicating the error-speed effect with confidence ratings 
is a necessary precondition for the aim of our Experiment 
2, namely to conduct a direct test of the aforementioned 
RT strategy by reversing task order. If we assume that mis-
leading evidence is the source of the error-speed effect, as 
explained above, one critical assumption to account for the 
effect is that the memory evidence for one stimulus remains 
approximately constant across different test occasions. As 
long as this precondition is met, the error-speed effect should 
not be contingent on the order in which participants encoun-
ter the two tasks.

For example, according to the RTCON2/diffusion model, 
both the speed in a binary recognition task and the confi-
dence of the response depend on the elicited memory signal. 
Thus, the speed of binary recognition responses should be 
predictive of a later confidence judgment. At the same time, 
however, the confidence indicated in a first recognition task 
should also correlate with the response speed in a subse-
quent binary recognition task.

The same rationale holds for those discrete-state models 
that can account for the error-speed effect (e.g., the 2LTM). 
Binary recognition responses should correlate with the 
respective confidence recognition responses as the memory 
evidence of a stimulus should – in most cases – elicit the 
same discrete state in the binary task from which the confi-
dence decisions arise (e.g., incorrect detection or guessing 
out of uncertainty in case of errors). This prediction holds 
irrespective of whether the binary or the confidence-rating 
task are presented first.

In contrast, a simple RT strategy in which confidence 
responses are based on the speed of the response given in 
the preceding binary recognition task is thwarted when par-
ticipants provide confidence ratings prior to the binary rec-
ognition responses. Thus, in our second experiment we aim 
to investigate whether the effect still occurs when the order 
of the binary recognition task and confidence-rating task is 
reversed. More precisely, we predict that if the error-speed 
effect is indeed caused by misleading memory evidence, a 
higher confidence towards the incorrect response should go 
along with on average a faster erroneous decision in a sub-
sequent binary recognition task. On the other hand, a failure 
to observe such an effect would suggest that participants use 
an RT-based strategy for selecting their confidence rating.

Methods

Because Experiment 1 and Experiment 2 differ only in the 
order of their test blocks, we present methods and results 
conjointly, highlighting differences where present. Both 
experiments were pre-registered on the Open Science 
Framework (OSF) prior to data collection (see https:// osf. 
io/ 3qzwh/).

Sample

Both experiments implemented a sequential sampling plan 
using a sequential probability ratio t-tests (SPRTs), which is 
typically more efficient for reaching a conclusion with pre-
determined power than classical test regimes with fixed sam-
ple size (Schnuerch & Erdfelder, 2020; see also Wald, 1945). 
The sequential test conforms to an a priori specified power 
(1-β) and α-error given a targeted effect size (dz). After every 
complete and valid data set, the size of the empirical likeli-
hood ratio (LR) is compared to two criteria. The LR is the 
ratio of the likelihood of the observed data given the alter-
native hypothesis and the likelihood of the observed data 
under the null hypothesis (for more details see Appendix 
A). The t-distribution for the alternative hypothesis is non-
central, with a non-centrality parameter corresponding to an 
expected effect size of dz. For the present study, we chose an 
effect size of dz = 0.3 as it represented the lower boundary of 
the 90% confidence interval when estimating a meta effect 
size over the results from our previous study on error-speed 
effects (Voormann et al., 2021).

To calculate the inference criteria, we specified α = .05 
and 1-β = .95. This led to the decision criteria A = 19 and B 
= .053. As long as the LR was in between the two decision 
criteria, sampling was continued.2 As pre-registered, infer-
ence criteria were checked at least once a day. If the decision 
boundaries had been crossed during a day while further data 
sets were obtained (which was the case in Experiment 1), the 
inference decision was based on the data sets until the first 
crossing of one of the decision boundaries.

Across both experiments, a total of 66 participants were 
tested. One participant had to be excluded due to techni-
cal problems and one participant missed the pre-registered 

2 To ensure the feasibility of the sample size, we defined a priori 
the maximum number of collected data to be N = 122 per experi-
ment. This corresponded to the capability to detect an effect of size 
dz = .30 with α = .05 and β = .05 if a non-sequential design had 
been employed. As pointed out by Martin Schnuerch, it is inadmis-
sible to conduct a classical null-hypothesis significance test when 
the maximum number of collected data is reached as it inflates the 
Type-I error rate of the overall procedure. Instead, it is good prac-
tice to refrain from any inferential procedure and simply report the 
likelihood ratio as a measure of the statistical evidence provided by 
the data. However, both experiments reached a conclusion before the 
maximum sample size was obtained.

https://osf.io/3qzwh/
https://osf.io/3qzwh/
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inclusion criterion defined as a minimum difference between 
hit and false alarm rates of .1. This resulted in a final sam-
ple size of 48 participants in Experiment 1 (35 females, 13 
males, with age ranging between 19 and 39 years, M = 24.1 
years, SD = 4.9 years) and 16 participants in Experiment 2 
(13 females, three males, with age ranging between 21 and 
41 years, M = 25.4 years, SD = 5.1 years).

All participants spoke German fluently and had normal 
or corrected-to-normal vision. For complete participation, 
psychology students received partial course credit. All other 
participants received a monetary compensation instead.

Material

As in Voormann et al. (2021), a list of 639 German nouns 
(taken from Lahl et al., 2009) served as word pool from 
which targets and lures were drawn for use in the recognition 
paradigms. All words were neutral in valence, between four 
and eight characters long and approximately equally frequent 
in spoken language.

Procedure

We kept the procedure as close as possible to the extended 
condition in Voormann et al. (2021). In both experiments, 
participants first completed a study phase that was followed 
by a test phase consisting of alternating blocks of a binary 
recognition task and a confidence-rating task. However, the 
order of the tasks during the test phase differed between 
experiments (see Fig. 3). In total, participants completed 
three study-test cycles: one practice cycle, to get acquainted 
with the procedure, followed by two experimental cycles. 

The practice cycle and the experimental cycles differed in 
the number of trials but were identical in all other regards. 
Data obtained in the practice cycle were excluded from sub-
sequent analyses.

The study phase of each cycle consisted of multiple 
sets of four words. The practice cycle comprised a total of 
seven sets (28 words), whereas each of the experimental 
cycles included a total of 20 sets (80 words). Participants 
were instructed to memorize each of the presented words 
to the best of their ability. The words appeared consecu-
tively, centered on the screen, for 1,900 ms with a 100-
ms blank screen separating words of the same set. After 
each set of four words, participants were asked to recall 
one specific word indicated by its position within the set. 
Word position was randomly chosen. If a typed response 
was incorrect, an error message appeared for 1,000 ms. 
Words from to-be recalled positions were not presented in 
the test phase. Furthermore, the first and the last study set 
served as filler sets to buffer primacy and recency effects. 
These sets were discarded for the analyses. However, the 
six words from the filler sets not recalled during study 
formed a separate word pool, which was used in warm-up 
trials in the subsequent tasks.

The study phase was followed by the test phase, which 
comprised alternating blocks of the binary recognition 
task and the confidence-rating task. In the practice cycle, 
participants responded to two series of these alternat-
ing task blocks. In each of the two experimental cycles, 
participants accomplished six series of these alternating 
task blocks. In Experiment 1, each series started with the 
binary recognition block followed by the confidence-rating 
block, whereas in Experiment 2, each series started with 

Fig. 3  Experimental procedure of Experiment 1 and 2
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the confidence-rating block followed by the binary recog-
nition block.3

In the binary recognition task, participants were asked 
to indicate as quickly and as accurately as possible whether 
a presented word was new (not studied in the preceding 
study phase) or old (studied in the study phase). Words 
were presented individually in the center of the screen 
until a response was recorded. To remind participants of 
the instructed response mapping, the words “ALT” and 
“NEU” (German for “OLD” and “NEW”) were presented 
below the stimulus paired with the respective response 
keys (“Y” for new words and “-” for old words on a Ger-
man QWERTZ keyboard).

In the confidence-rating task, participants were asked to 
indicate their level of confidence that a word had or had 
not been previously studied. Participants rated each word 
on a scale from 1 “very sure NEW” to 6 “very sure OLD.” 
Words were again presented individually in the center of 
the screen until a response was given. As in the binary rec-
ognition task, the response mapping appeared on the screen 
below the stimulus depicting a rating scale aligned from left 
to right (‘1’ – “Sehr sicher NEU” [“most certainly NEW”]; 
‘2’ – “Sicher NEU” [“certainly NEW”]; ‘3’ – “Eher NEU” 
[“rather NEW”]; ‘4’ – “Eher ALT” [“rather OLD”]; ‘5’ 
– “Sicher ALT” [“certainly OLD”]; ‘6’ – “Sehr sicher ALT” 
[“most certainly OLD”]). To provide their answer, partici-
pants used the number keys from 1 to 6 above the letter 
keys on a German QWERTZ keyboard. Once a response 
was entered, a red cross appeared for 500 ms at the position 
of the corresponding number. After a blank screen of 50 ms, 
the next stimulus followed.

Targets and lures appeared equally frequent in each block, 
with lures being randomly drawn from the remaining word 
pool. In the practice cycle, each block included 20 words 
(ten targets and ten lures); in the two experimental cycles, 
each block consisted of 18 words (nine targets and nine 
lures). Additionally, two warm-up trials consisting of a tar-
get and a lure were presented at the beginning of each binary 
recognition block to accommodate for slower response times 
usually observed in the first trials of a block. The target pre-
sented in those warm-up trials was randomly drawn from the 
pool of not-to-be recalled words of the filler blocks in the 
respective study phase, while the lure was randomly sampled 
from the remaining words in the word pool.

To maintain a constant block size between binary recog-
nition blocks and confidence-rating blocks, the two warm-
up trials were also included in the confidence-rating task. 

However, these trials were distributed randomly within the 
block and were excluded from further analyses. For each 
series of alternating blocks, the set of words presented in 
each binary recognition block matched the words of the cor-
responding confidence-rating block.

Analysis for the sequential probability ratio 
t‑tests (SPRTs)

For both experiments, the sequential sampling procedure 
was based on the value of the t statistic from a t-test com-
parison of the mean confidence ratings for fast versus slow 
errors observed in the binary recognition task; more pre-
cisely on the incremental likelihood ratio of the t value under 
the null and alternative hypothesis. To compute the likeli-
hood ratio, we considered as the null hypothesis that there 
is no difference in mean confidence ratings between stimuli 
with fast- and slow-error responses in the binary recognition 
task. As the alternative hypothesis, we specified that there 
is a difference in mean confidence ratings for fast and slow 
errors with effect size dz = 0.3.

Following previous work on the error-speed effect (Starns 
et al., 2018; Voormann et al., 2021), we used a median split 
to categorize the errors from the binary recognition task as 
fast or slow. More specifically, for each participant we com-
puted separate medians depending on response correctness 
(correct vs. incorrect) and stimulus type (target vs. lure), and 
we defined all errors with RTs smaller than the respective 
median to be fast errors. Additionally, we inverted confi-
dence ratings for lures in such a way that for every stimulus 
type a “6” indicates a strong confidence towards the correct 
response and a “1” indicates a strong confidence towards 
the incorrect response. For more details on the sequential 
sampling procedure, see Appendix A.

Results

Data preparation

We excluded all warm-up trials from the analysis. Further-
more, as pre-registered and analogous to Starns et al. (2018), 
we excluded trials with responses faster than 400 ms (to keep 
the number of avoidable errors low) or slower than 8 s in 
binary recognition decisions.4 This resulted in an exclusion 
of 0.31% of total trials in Experiment 1 and 0.09% of total 
trials in Experiment 2.

3 Like previous studies (Starns et al., 2018; Voormann et al., 2021), 
we implemented alternating blocks of confidence ratings and binary 
decisions instead of administering each task as a whole. This reduced 
the confound between the item position and response time in the 
binary recognition task, as responses tend to become faster to the end 
of a list.

4 Admittedly, these RT cutoffs can be considered arbitrary. We, 
therefore, conducted robustness checks by additionally analyzing our 
data with RT cutoffs of 200 ms and 8 s as well as of 200 ms and 6 s, 
which led to the same pattern of results.
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Sequential probability ratio t‑tests

Experiment 1

On average, participants made errors in 27.8% of the trials 
during the binary recognition task. The mean RT of slow-
error trials was 1,663 ms (SD = 678 ms) and the mean RT 
of fast-error trials was 834 ms (SD = 202 ms). Appendix B 
provides more extensive descriptive statistics for error and 
correct responses. After sampling 47 participants, the likeli-
hood ratio exceeded the upper boundary indicating sufficient 
empirical evidence to accept the alternative hypothesis with 
95% power (see Fig. 4), namely that there is a difference 
in confidence observed in a subsequent confidence-rating 
task for fast and slow errors of a preceding binary recogni-
tion task. As can been seen in Table 1, fast-error stimuli 
received on average more extreme confidence ratings in the 

direction of the incorrect response (i.e., values closer to 1) 
compared to slow-error stimuli. This effect is/was in line 
with the direction of the typical error-speed effect.

Fig. 4  Sampling paths of the sequential probability ratio t-tests for the two experiments

Table 1  Mean and standard deviation of the confidence ratings 
given to fast and slow errors of a binary recognition task as well as 
the results of the SPRT separately for Experiment 1 and 2. Smaller 
confidence values indicate a higher confidence towards the incorrect 
response

Note. The boundary to accept the alternative hypothesis amounted to 
A = 19 and the boundary for the null hypothesis amounted to B = .053

Confidence fast 
error
M (SD)

Confidence 
slow error M 
(SD)

n t LR

Experiment 1 2.76 (0.59) 2.92 (0.42) 47 2.67 23.89
Experiment 2 2.66 (0.55) 3.29 (0.64) 16 4.83 24.27
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Experiment 2

Participants of Experiment 2 made an error in 30.1% of 
binary recognition trials on average. The mean RT of slow-
error trials was 1,333 ms (SD = 315 ms) and the mean RT 
of fast-error trials was 735 ms (SD = 111 ms). Appendix B 
provides more extensive descriptive statistics for error and 
correct responses. After sampling 16 participants, the LR 
exceeded the upper boundary, indicating sufficient empiri-
cal evidence to accept the alternative hypothesis with 95% 
power (see Fig. 4), namely that there is a difference in con-
fidence ratings between fast and slow errors. In accordance 
with Experiment 1 (see Table 1), fast-error stimuli received 
on average more extreme confidence ratings in the direction 
of the incorrect response compared to slow errors. Again, 
this effect corresponds to the pattern of the error-speed 
effect.

Discussion

In Experiment 1, we replaced the 2AFC task that has so far 
been used as the second task in the error-speed paradigm 
by a confidence-rating task, and still found an analogue to 
the error-speed effect. More precisely, fast-error responses 
in the binary recognition task were associated with stronger 
confidence ratings towards these incorrect responses during 
the later confidence-rating task. Thus, error-speed effects 
seem to occur regardless of specific task characteristics or 
demands (such as the pairwise stimulus presentations in the 
usual 2AFC task), and independent of the type of measure-
ment used (such as accuracy data in previous studies vs. 
confidence ratings in the present experiments). Replicating 
an error-speed effect using different tasks demonstrates that 
the effect reflects core mechanisms of recognition memory 
rather than being tied to one particular combination of tasks. 
The occurrence of this variant of the error-speed effect sug-
gests that recognition errors result (at least partially) from 
probably quite stable misleading memory evidence. As 
outlined in the Introduction, models that incorporate such 
a notion – either directly, as in most continuous dynamic 
recognition models (e.g., diffusion model; Ratcliff, 1978), 
or from an additional discrete incorrect detection state 
(such as the 2LTM; Starns, 2021; Starns et al., 2018) – can 
account for the error-speed effect and its variants intro-
duced in the present work. However, models that attribute 
all error responses to the same discrete mental state (such 
as the 2HTM; Snodgrass & Corwin, 1988) cannot explain 
this pattern of results.

In Experiment 2, we went one step further and reversed 
the order of tasks so that participants first had to complete 

a confidence-rating task and only then a binary recognition 
task. Results revealed that there was an error-speed effect 
regardless of task sequence. In line with recent studies, in 
which the error-speed effect also occurred when the item 
from the binary task was paired with a target or a lure not 
previously tested (Akan et al., 2023; Yüvrük et al., 2023), 
this refutes an alternative explanation of the error-speed 
effect whereby subsequent responses are informed by RTs 
from the preceding binary recognition task. Such an RT 
strategy was, for example, predicted by early models for 
confidence ratings (Audley, 1960). Instead, RTs, response 
accuracy, and confidence seem to tap the same latent con-
struct, that is, stable-in-time memory evidence, which 
is a necessary precondition for any error-speed effect to 
manifest.

Previous studies already revealed that RTs and confidence 
ratings are correlated (Weidemann & Kahana, 2016). How-
ever, other than in the present study, participants of these 
earlier studies usually indicated how confident they are in 
their binary recognition decision immediately after making 
it. Nevertheless, not many recognition-memory models can 
jointly account for RTs, accuracy, and confidence ratings. 
Most models focus on, for instance, RTs and accuracy or 
RTs and confidence ratings, both within one task. However, 
they do not account for the relationship between these dif-
ferent metrics across tasks. Therefore, we had to consider 
a combination of the classical diffusion model (for binary 
responses) and the RTCON2 (for confidence ratings) under 
the assumption that the drift rate and the position of the 
match distribution tap into the same latent construct, namely 
underlying memory evidence.

However, there is also a model that considers the com-
bination of binary decisions and subsequent confidence 
ratings: the two-stage dynamic signal detection model 
(2DSD; Pleskac & Busemeyer, 2010). In this model, binary 
responses are determined by a classical diffusion process. 
The subsequent confidence ratings, on the other hand, are 
determined based on a continued accumulation of evidence 
until the confidence response is actually required. The final 
confidence in the binary response therefore reflects the 
amount of evidence sampled during the binary decision pro-
cess (stage 1) and during the inter-judgment time between 
the binary decision and the confidence-rating response 
(stage 2; Pleskac & Busemeyer, 2010). Although this model 
is well able to explain many typical patterns observed for 
RTs, accuracy, and confidence ratings, it is difficult to apply 
it in the present case since a confidence-rating trial did not 
take place immediately after the respective binary recog-
nition trial but with a lag of up to 36 trials. Furthermore, 
in Experiment 2, confidence ratings were given before a 
binary response was given. Nevertheless, the fundamental 
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assumption of the 2DSD according to which binary RTs, 
accuracy, and confidence ratings reflect different aspects of 
the same latent construct is supported by the present findings 
and the occurrence of the error-speed effect.

Taken together, the present study demonstrates that the 
error-speed effect is likely not just due to an RT strategy 
whereby participants base a later recognition response on 
the speed with which they executed an earlier recognition 
response. Rather, our findings support the notion that the 
error-speed effect is caused by misleading memory evidence. 
Furthermore, we show that the effect generalizes from 2AFC 
tasks to confidence-rating tasks, which is in line with the idea 
that the binary recognition task, the confidence-rating task, 
and the 2AFC task measure the same construct: (occasionally 
misleading) memory evidence.

Appendix A

Calculation of the sequential ratio probability t‑test

Before conducting the sequential probability ratio test, one 
needs to specify three parameters (see Schnuerch & Erdfelder, 
2020):

1. The effect size ( dz or d depending on the type of test)
2. Alpha error �
3. Test power 1 − �

Computation of the likelihood ratio

The decision about the sampling process is determined by the 
size of the likelihood ratio. The likelihood ratio defines the 
ratio of the likelihood of the data given the H1 relative to the 
likelihood of the data given the H0 . This can be defined as:

where dt denotes the density of the t-distribution (which is 
in R accessible via dt()). To compute the respective density 
the empirical tn value for all n cases, the degrees of freedom 
df n = n − 1 , and the non-centrality parameter Δn have to be 
specified.

The empirical t value can be determined in the one-sample 
case by

LRn =
dt(tn|dfn,Δ1)

dt(tn|dn,Δ0)

with the mean difference between two dependent samples 
d being defined as

and the standard deviation of differences �D being

where x1i and x2i denote the respective individual test values 
of person i.

The non-centrality parameter Δn describes the shift of the 
t-distribution on the horizontal axis. It is determined for the 
one-sample t-test by

Thus, the non-centrality parameter changes after each 
observation by the factor 

√
n . The non-centrality parameter 

under the H0 is 0.

Decision process

Based on the height of the likelihood ratio value, the deci-
sion rule is as follows:

1. LRn ≥ A accept H1 and reject H0

2. LRn ≤ B accept H0 and reject H1

3. B < LRn < A continue sampling.

The boundaries A and B can be computed considering the 
�-error and power with

 A =
1−�

�
 and B =

�

1−�
.

Appendix B

Tables 2 and 3 provide descriptive statistics separately for 
errors and correct responses, and slow and fast target and 
lure responses in Experiments 1 and 2. As we used a sequen-
tial sampling design, caution is required when interpreting 
these descriptive statistics in terms of effect sizes.

t
�
df n

�
=

d ⋅
√
n

�D

d =

∑n

i=1
x1i − x2i

n

�D =

�
∑n

i=1
((x1i − x2i) − d)

2

n − 1

Δn = dz ⋅
√
n
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