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Anne Voormann1 ·Mikhail S. Spektor1,2,3 · Karl Christoph Klauer1

© The Author(s) 2021

Abstract
In everyday life, recognition decisions often have to be made for multiple objects simultaneously. In contrast, research
on recognition memory has predominantly relied on single-item recognition paradigms. We present a first systematic
investigation into the cognitive processes that differ between single-word and paired-word tests of recognition memory. In
a single-word test, participants categorize previously presented words and new words as having been studied before (old)
or not (new). In a paired-word test, however, the test words are randomly paired, and participants provide joint old–new
categorizations of both words for each pair. Across two experiments (N = 170), we found better memory performance for
words tested singly rather than in pairs and, more importantly, dependencies between the two single-word decisions implied
by the paired-word test. We extended two popular model classes of single-item recognition to paired-word recognition,
a discrete-state model and a continuous model. Both models attribute performance differences between single-word and
paired-word recognition to differences in memory-evidence strength. Discrete-state models account for the dependencies
in paired-word decisions in terms of dependencies in guessing. In contrast, continuous models map the dependencies
on mnemonic (Experiment 1 & 2) as well as on decisional processes (Experiment 2). However, in both experiments,
model comparison favored the discrete-state model, indicating that memory decisions for word pairs seem to be mediated
by discrete states. Our work suggests that individuals tackle multiple-item recognition fundamentally differently from
single-item recognition, and it provides both a behavioral and model-based paradigm for studying multiple-item recognition.

Keywords Recognition memory · Continuous models · Discrete-state models · Cognitive modeling

Recognition plays an important role in everyday life: We
have to recognize faces of people, landmarks for navigation,
or our bike in a group of bikes. Scholarly investigations of
recognition memory typically use single-word recognition
tasks in which participants first study word lists in a
study phase and afterwards categorize presented words
as previously studied (old) or not (new) in a recognition
phase (e.g., Allen & Garton, 1968; Snodgrass & Corwin,
1988; Bröder & Schütz, 2009). In contrast, the everyday-life
recognition context is typically considerably more complex.
For example, we often first meet people separately, and later
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encounter them as members of a larger group, at which point
we have to decide whom in the group we actually know and
whom not, which people are ‘old’ and which are ‘new’. The
question we seek to study here is how recognition decisions
for multiple objects differ from the recognition of single
objects. For this purpose, we used a paired-word recognition
paradigm in which participants have to categorize two
randomly paired words simultaneously.

Evidence from related domains suggest that these two
kinds of decisions differ in important ways. Consider
the case of witness questioning, in which sequential and
simultaneous lineups have been compared. In a sequential
lineup, each lineup member is presented separately and
judgments are made after each presentation, similarly to
single-word recognition. A simultaneous lineup presents all
lineup members at the same time, which is more akin to
multiple-word recognition. Interestingly, the identification
rate is higher (and consequently, fewer targets are missed)
in simultaneous than in sequential lineups while more
lures are correctly rejected in sequential lineups (e.g.,
Steblay et al., 2001; Steblay et al., 2011). The difference
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between simultaneous and sequential lineups is often
explained by the use of different strategies: Simultaneous,
but not sequential, lineups support comparative judgments
(Lindsay & Wells, 1985). Wixted and Mickes (2014)
specified these differences further: Their diagnostic-feature
detection hypothesis posits that in simultaneous lineups,
only diagnostic features (i.e., features that are not shared by
all lineup members) are used for discrimination, whereas
in sequential lineups witnesses use all available features
(diagnostic and non-diagnostic). Because non-diagnostic
features are non-diagnostic of guilt, focusing on diagnostic
features enhances the ability to discriminate innocent from
guilty suspects.

Note that this account capitalizes on the fact that
the different recognition decisions made or implied for
each lineup member are by design not independent of
each other.1 The knowledge that at most one perpetrator
exists can validly inform other decisions, and in Wixted
and Mickes’ (2014) account, it even informs participants’
focus on certain features at the expense of others. Here,
we address the question whether multiple decisions to
simultaneously presented objects, each of which can in
principle be old or new, are independent.

If two independent stimuli are presented simultaneously,
independent judgments could be expected, given an
optimally tuned memory system and decision strategy.
Considering human decision makers, one plausible idea
would indeed be that people evaluate the two objects
sequentially and independently, one object after the other.
On the other hand, even in single-word recognition tasks,
in which participants judge objects sequentially, there
exists evidence that two subsequent judgments are not
always independent from one another (e.g., sequential
effects exist for certain trial combinations; Ratcliff &
Starns, 2009). However, models describing single-word
recognition typically do not include such dependencies.
For example, signal detection theory, an account in which
responses are based on the comparison of a continuous
familiarity signal produced from the presented stimulus and
an internal response criterion, assumes that each presented
stimulus is evaluated independently (Wickens, 2002).
Neither familiarity signals nor criterion values are affected
by preceding recognition decisions. Similarly, threshold
models, which model recognition decisions as based on
discrete “detect” and “uncertainty” states and guessing
processes, do not permit dependencies between stimuli
(Snodgrass & Corwin, 1988). Neither the probabilities
of entering one of the modeled mental states nor the
guessing distributions are affected by preceding recognition
decisions.

1Similar remarks pertain to other recognition paradigms in which
multiple items are presented at test such as the two alternative forced-
choice task or ranking tasks (Kellen & Klauer, 2018).

As the first empirical investigation of its kind, Greene and
Klein (2004) implemented a paired-word recognition task
and found that recognition performance to randomly paired
objects does differ from recognition performance to single
objects. More specifically, Greene and Klein compared the
performance in paired-word trials of “pseudoparticipants”,
calculated from participants’ responses in single-word
trials, to the performance of real participants either deciding
whether both words were old (‘both condition’) or whether
at least one word was old (‘either condition’). They found
performance differences for certain response combinations
between pseudoparticipants and real participants, without
differences in overall accuracy. Greene and Klein discussed,
but did not decide between, a number of possible
mechanisms that may have caused the differences, notably
criterion shifts, sequential effects, use of associative
information as well as a spill-over of evidence from one
familiarity signal to the other.2

The goal of the present study is to provide a first
systematic investigation into the cognitive processes that
differ between the classical single-word recognition task
and the paired-word recognition task. Additionally, we want
to investigate whether dependencies within the recognition
decisions for paired-word trials occur at all and if they
do, how they can be characterized. Do they originate in
dependencies between the signals retrieved from memory
(mnemonic origin), in dependencies in the way in which
these signals are used to arrive at old/new decisions
(decisional origin), or in dependencies at both levels
(mnemonic and decisional origin)? To address these issues,
we extended the two previously mentioned models of
recognition decisions, continuous and discrete-state models,
(Kellen & Klauer, 2014) to the paired-word task, and
endowed them with the capability to model the above-
mentioned theoretical possibilities.

Modeling recognition decisions
in the paired-word task

Continuousmodels

Recognition models based on signal detection theory (Swets
et al., 1961) are arguably the most prominent examples of
continuous models. They assume that recognition decisions
are based on a continuous familiarity signal. Each time the
familiarity of a stimulus exceeds a certain criterion c the
stimulus is categorized as ‘old’ (Wickens, 2002), otherwise
the response ‘new’ is given. The difference in the mean

2Note that all of the mechanisms used for explanation except for a
spill-over of evidence have been argued to occur in the context of
single-word recognition as well (e.g., Ratcliff & Starns, 2009; Marken
& Sandusky, 1974; Rhodes & Jacoby, 2007; Homa, 1973).
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familiarity of previously studied words (targets) and new
words (lures), d ′, reflects the memory sensitivity.

In cases in which multiple words are presented simul-
taneously, a multidimensional version of signal detection
theory, general recognition theory (GRT), can be applied
(Ashby & Perrin, 1988; but see also Ashby & Soto, 2015).
GRT was originally developed to characterize dependen-
cies between different dimensions of perception, but can be
adapted to test for dependencies within recognition deci-
sions on both the mnemonic and decisional level (see Fig. 1;
Ashby & Gott, 1988; Ashby & Townsend, 1986).

In a paired-word recognition task, two dimensions are
considered (one for each word). To model dependencies
at the mnemonic level, we permit spill-over between the
two familiarity values elicited by the two members of a
pair, leading (a) to covariation of the members’ familiarity
signals across trials and (b) to overall shifts in the mean
familiarity value of each member depending on whether the
other member is an old or new word. Dependencies at the
decisional level are incorporated by letting response criteria
for each word depend upon the familiarity signal elicited by
the other word of a given word pair.

Discrete-state models

Discrete-state models assume that (possibly continuous)
evidence from memory is discretized into a small number
of mental states which then drive the recognition decision

Fig. 1 Illustration of the general recognition theory for paired-
word recognition using the mean group-level posterior parameters of
Experiment 2. Ellipses represent the different stimulus types: black for
two new words, gray for one old word paired with one new word, and
light gray for two old words. Dashed lines indicate the response criteria
that separate the respective responses

(Riefer & Batchelder, 1988). One prominent example is the
two-high threshold model (2HTM; Snodgrass & Corwin,
1988). According to the 2HTM, a target (lure) enters a
detect-old (detect-new) state with probability do (dn). With
probability 1 − do (1 − dn), the test item enters a state
of uncertainty, in which individuals can do little more
than guess the answer ‘old’ with probability g and ‘new’
with probability 1 − g (Bröder & Schütz, 2009). Note
that guessing can strategically use whatever contextual
information is available to participants such as the base rates
of old relative to new words in the test list or, in the present
case, the mental state which the other pair member has
entered.

We extended the 2HTM to multiple-word recognition
tasks by assuming sequential decisions for the two presented
words (see Fig. 2). To model dependencies in mnemonic
processes, we permitted a spill-over of evidence between
the two recognition decisions within the detection states.
Additionally, the introduction of several guessing states
dependent on the decision state of the other word covers
dependencies of decisional origin.

Using extended versions of both a continuous and a
discrete-state model does justice to an ongoing debate on
whether recognition decisions are based on a continuous
memory signal or mediated via discrete states (see, e.g.,
Pazzaglia et al., 2013; Province & Rouder, 2012; Kellen
& Klauer, 2011; Batchelder & Alexander, 2013), with
some arguing that the continuous versus discrete nature of
information used is task-dependent (Kellen & Klauer, 2014;
McAdoo et al., 2019).

Experiment 1

The aim of the first preregistered study was threefold.
First, we aimed to replicate Greene and Klein’s (2004)
finding that there exists a difference between single- and
paired-word recognition and to evaluate whether this is
(partially) mediated through dependencies within paired-
word recognition trials. The second aim was to assess the
performance of the discrete-state and continuous model
classes within this recognition paradigm, to achieve an
optimal description of the mechanism involved. Third, we
wanted to provide a model-based characterization of the
behavioral differences at the level of cognitive processes.
Such a characterization allows us to distinguish whether
behavioral differences between single- and paired-word
recognition reflect changes in decision strategies (i.e., how
a memory signal is transformed into decisions, as modeled
by the response criteria c or guessing parameters g), in
the mnemonic process (i.e., better or worse memory of the
items, as captured by differences in mean familiarity d ′ or
detection probabilities do), or in both. Additionally, it allows
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Fig. 2 Extended two-high threshold model for paired-word recogni-
tion. Abbreviations for response categories and stimuli: NN—both
words new; NO—left word new and right word old; ON—left word

old and right word new; OO—both words old. The trees for pair types
ON and OO are not shown. For a full description of the parameters,
see Supplementary Material

us to assess whether possible dependencies within paired-
word trials reflect dependencies in mnemonic, decisional, or
both processes.

To achieve these goals, we used a within-participant
design in which individuals completed both single- and
paired-word recognition trials to permit a comparison of the
cognitive processes involved. We adapted the 2HTM and the
GRT to be able to model both kinds of trials simultaneously.
Within each model class, we rigorously selected the best-
performing model to get an optimal description of the
processes involved. Thereafter, we compared the respective
winners with each other to evaluate which model is best
suited for the joint description of single- and paired-word
recognition.

Method

Both studies were conducted in line with the ethical
standards of the German Psychological Society and have
been preregistered prior to data collection on the Open
Science Framework (OSF). All preregistration materials,
code to run the experiments in PsychoPy 2 (Peirce, 2007),
raw data, data-analysis scripts, and model codes in Stan
(Carpenter et al., 2017) can be found at https://osf.io/cdtep/.
As the stopping rule for both experiments, we preregistered
to terminate data collection once 80 valid data sets had been
collected. Because we had no firm expectations regarding
effect sizes, we decided to sample 40 participants per
group for a total of 80 participants (not counting excluded
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participants), thereby doubling sample sizes from Greene
and Klein (2004) who sampled n = 20 per group.

Participants

A total of 88 participants completed the experiment
for partial course credit or a monetary reward. As per
preregistration, we excluded eight participants because they
were not native speakers of German or showed performance
not significantly above chance level. The remaining 80
participants (15 male, 65 female) were mostly university
students with different majors and ages between 18 and 50
years (M = 26.10, SD = 5.48).

Materials

The experiment’s word pool consisted of 644 German nouns
taken from Lahl et al. (2009). Each study list comprised
68 items randomly drawn from the word pool. We used the
first and last two items of each study list for initial warm-
up trials for the test blocks that were later discarded. There
were three different types of test blocks: single-word blocks,
paired-word blocks, and mixed blocks.

Single-word blocks consisted of 64 single-word trials,
32 old words randomly drawn from the study list and 32
new words not previously studied. Four additional words,
two old and two new, were used for warm-up trials. Paired-
word blocks comprised 64 paired-word trials presenting two
words left and right of the screen center. These trials could
be composed of two old words (old–old), two new words
(new–new), an old word on the left side and a new word
on the right side (old–new), or vice versa (new–old). There
were 16 trials of each type. The four initial warm-up trials
consisted of one trial per pair type. Mixed blocks included
32 single-word trials (16 old and 16 new words) and 32
paired-word trials (eight trials per pair type). Here, warm-
up trials consisted of an old and a new item as well as two
paired-word trials of either the type old–old and new–new
or old–new and new–old.

In single-word trials, words appeared in the center of
the screen. In paired-word trials, a horizontal gap of 60mm
separated the two words.

Design and procedure

The study implemented two between-participants condi-
tions to which the participants were randomly assigned. In
the mixed condition (n = 40), participants encountered
single-word and paired-word trials intermixed. In the pure
condition (n = 40), participants alternated between pure
blocks of single-word trials and pure blocks of paired-word

trials with the kind of the first block (single-word or paired-
word) counterbalanced. Both conditions consisted of four
study–test cycles.

In each study phase, words were presented sequentially
central on the screen. Each word appeared for 3 s and with
300ms interstimulus interval between two words.

The trial sequence within test blocks was randomized,
but started with the four designated warm-up trials. Prior
to the presentation of a single-word stimulus, a fixation
cross was presented centrally for 800ms. Participants had
to decide whether the stimulus was old or new. Prior to the
presentation of a paired-word stimulus, two fixation crosses
appeared on screen for 800ms at the positions at which
the words appeared. Participants had to decide whether the
presented word pair was of the type old–old (OO), old–new
(ON), new–old (NO), or new–new (NN).

Each stimulus was visible on the screen until a response
was recorded. An inter-trial interval of 600ms separated two
test trials. Participants were instructed to respond as quickly
and accurately as possible using the arrow keys. For single-
word trials the upper arrow key served for indicating old
words and the lower arrow key for indicating new words.
For paired-word trials participants used the upper arrow key
to indicate old-old pairs, the lower arrow key for new-new
pairs, the left arrow key for old-new pairs and the right arrow
key for new-old pairs. The appropriate response mapping
was visualized on every trial in the lower right corner of
the screen. Between two study-test cycles, participants were
required to solve four simple arithmetic problems and were
allowed to take self-paced breaks.

Model specification, selection, and comparison

To evaluate the differences between single- and paired-
word recognition within GRT, we implemented different
criteria and mean-familiarity values for words tested in
single-word trials and for words tested in paired-word
trials. It is typically assumed that there is more variance
in the familiarity of old words than of new words due
to attention fluctuation during the study phase (Kellen &
Klauer, 2018). To account for this, we allowed the variance
of the familiarity values of old words (σ 2

old) to differ from
the variance for new words, which could be set equal to one
without loss of generality. As the study phase is equivalent
for single-word and paired-word trials, σold was set equal
for old words from both kinds of trials. GRT accommodates
possible dependencies between the recognition processes
for the members of a word pair in two ways: At the
decisional level, criteria can be influenced by the familiarity
value of the other pair member (via parameters bl and br );
at the mnemonic level, the familiarity values of the two
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pair members can be correlated (parameter �). The latter
implies a covariation of mean familiarity values across pair
types (NN, NO, ON, and OO) that was modeled by spill-
over parameter μspill (for more detailed information, see
Supplementary Material).

For the 2HTM, we implemented separate detection states
for each word within the paired-word trials. While do was
allowed to differ between single- and paired-word trials, it
was restricted to be equal for the left and right word in
paired-word trials. For identifiability reasons, we assumed
dn to be invariant between single- and paired-word trials.
To account for possible dependencies within paired-word
trials on the mnemonic level, we added a novel parameter
ρ increasing (for ρ > 0) or decreasing (for ρ < 0)
detection probabilities in OO and NN trials relative to ON
and NO trials (see Fig. 2 and Supplementary Material).
To account for dependencies on the decisional level, we
permitted guessing to be influenced by whether the other
word had entered a detect-old state, had entered a detect-
new state, had been guessed old, or had been guessed new
(for detailed information, see Supplementary Material).

Our analyses followed a two-step procedure. In the first
step, we used nested model comparisons of restricted mod-
els within each class of models (GRT and 2HTM) to identify
the locus of differences between single-word and paired-
word recognition as well as the nature of dependencies
in paired-word recognition. Specifically, following recom-
mendations by Wagenmakers et al. (2010), we fitted all
models with and without any combination of parameter
restrictions of interest and computed Bayes factors between
them. For the GRT, the restrictions of interest addressed the
following questions (see Supplementary Material for more
details on the different model parameters):

1. Can the sensitivities for old words be set equal
across single-word and paired-word condition (μolds =
μoldp )?

2. Can the criteria in the single-word condition and for left
pair members in the paired-word condition be set equal
(cs = cl)?

3. Is the mean spill-over μspill different from zero?
4. Is the correlation � different from zero?
5. Is the decisional-dependence parameter bl different

from zero?
6. Is the decisional-dependence parameter br different

from zero?

For the 2HTM, the restrictions address the following
questions:

1. Can the detection probabilities for old words be set
equal across single-word and paired-word condition
(dos = dop )?

2. Can the guessing probabilities in the single-word
condition and for left pair members given uncertainty
about the right pair member be set equal (gs = glru)?

3. Is the mnemonic-dependence parameter ρ different
from zero?

4. Do guessing probabilities for the left pair member differ
depending upon whether the right pair member was
detected to be old versus detected to be new (grdo =
grdn)?

5. Do guessing probabilities for the right pair member
differ depending upon whether the left pair member was
detected to be old versus detected to be new (gldo =
gldn)?

6. Do guessing probabilities for the right pair member
differ depending upon whether the left pair member was
guessed to be old versus guessed to be new (glgo =
glgn)?

In the second step, we pitted the best within-class models
against each other to determine whether a continuous or
a discrete-state model is best suited to characterize the
behavior in the experiment.3

We implemented all models within an hierarchical
Bayesian framework. For model selection, we relied on
Bayes factors that allow us to quantify the evidence in
favor of or against each model out of a set of models.
In contrast to likelihood-ratio tests and information criteria
such as the Akaike information criterion, Bayes factors
control for the functional flexibility of a model in model
comparisons rather than approximating model complexity
using the number of free parameters as a proxy.

To compute Bayes factors for nested comparisons within
each model class, we relied on the Savage–Dickey method,
using effect coding for the to-be-tested differences between
parameters (Wagenmakers et al., 2010). We specified priors
on the effect parameters by using probability distributions
for which 95% of the probability mass lies in an area
corresponding to small to medium effects, as proposed
by Wagenmakers et al. (2010, Appendix). For all other
parameters, we used weakly informative priors (for a full
description of the priors used, see the Supplementary
Material). For within-class model comparison we fitted each
nested model, retaining 60 000 samples from four chains
after thinning with a factor of two. The first 10 000 samples
were discarded as warm-up. We obtained Bayes factors for
each nested model within each of the model classes relative
to the most complex model, allowing us to calculate the

3We focused on the comparison of GRT and the adapted 2HTM
because those models nest all models mentioned in the preregistration.
For example, the “detection decrement model” mentioned in the
preregistration is a version of GRT and 2HTM in which d ′ and do,
respectively, differ between single and paired words, while decision
parameters stay constant for single and paired words and parameters
capturing the dependencies within paired-words are set to zero.
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posterior model probabilities. For each model in the set of
candidate models, they reflect the posterior probability that
this model rather than another of the candidate models has
generated the data. They convey the same information as
Bayes factors do in an easily interpreted format.

To compute Bayes factors comparing the best-
performing models within each model class across
classes, we estimated marginal likelihoods (using the
bridgesampling package; Gronau et al., 2017) for the
selected models, once including individual differences (i.e.,
with random effects for participants) for parameters con-
strained to be equal at the group level and once without such
individual differences. If not already included, we added
the respective full models to the comparison procedure.
To achieve a relatively stable estimation of the marginal
likelihood, a larger number of posterior samples is required
(Gronau et al., 2017). Therefore, we based these analyses
on 140 000 samples for each of the four chains with a
thinning factor of four, discarding the first 40 000 sam-
ples as warm-up. Using marginal likelihoods to compare
the selected models not only independently validates the
procedure in the first step using another algorithm (Bayes
factors as computed in the first step are ratios of marginal
likelihoods). Additionally, it allowed us to select the single
model that can best account for the behavioral data across
model classes based on a Bayes factor comparison and to
use this model to draw inferences about the underlying
cognitive processes.

Results

Data preparation and behavioral analyses

As per our preregistration, we excluded all trials with
responses faster than 250ms or slower than 10 s which led
to an exclusion of 0.19% of total trials. Figure 3 shows
the response frequencies for each trial type for single- and
paired-word trials.

To assess whether there was a performance difference
between single- and paired-word trials, we conducted two
2 × 3 mixed ANOVAs, one on hit rates and one on false-
alarm rates with condition (pure vs. mixed) as between-
participants factor, and trial type (single, paired-left, vs.
paired-right) as within-participant factor (see Fig. 4 for
mean values). Hit and false alarm rates were arcsine-
transformed to correct for dependencies between the mean
and standard deviation of rates. Where necessary, we used
Greenhouse–Geisser corrected degrees of freedom. We
neither found an effect of condition on hit rates, F(1, 78) =
0.30, p = .588, η2p = .004, 95% confidence interval
of the effect (CI): [.00, .07], nor on false-alarm rates,
F(1, 78) = 3.12, p = .081, η2p = .04, 95% CI: [.00, .16],
suggesting that there are no substantial differences between

Fig. 3 Median percentages and interquartile ranges of given responses
(‘Observed’) to the respective pair types and the predicted frequencies
of the two-high threshold model (2HTM) and general recognition
theory (GRT) for single words (panel A) and paired words (panel B).
N—word not studied (new); O—word studied (old); NN—both words
new; NO—left word new, right word old; ON—left word old, right
word new; OO—both words old. Outliers are not depicted

mixed and pure blocks. More importantly, we found a
significant difference between trial types within hit rates,
F(1.85, 144.2) = 22.04, p < .001, η2p = .22, 95% CI:
[.11, .34] but not within false-alarm rates, F(1.83, 143.0) =
1.53, p = .222, η2p = .02, 95% CI: [.00, .08]. Using
paired-sample t-tests and a Bonferroni-corrected alpha level
of .017, post-hoc analyses revealed that the effect within hit
rates was driven by differences between single-words and
paired-left words, t (79) = 5.32, p < .001, dz = 0.36, 95%
CI: [0.22, 0.50], as well as paired-right words, t (79) = 5.47,
p < .001, dz = 0.38, 95% CI: [0.24, 0.52], whereas there
were no differences between paired-left and paired-right
words, t (79) = 0.84, p = .401, dz = 0.04, 95% CI:
[−0.06, 0.15]. In sum, the results reveal that recognition
performance is impeded for paired words relative to single
words.

In a second step, we tested for dependencies in responses
within paired-word trials. We used the log-likelihood ratio
statistic, G2, to assess whether the response probabilities of
the sixteen paired-word response categories (e.g., respond
‘OO’ for a test pair of type ON) can be represented as the
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Fig. 4 Hit and false-alarm rates for single-word trials (single) and paired-word trials split into words appearing on the left (paired left) and the
right (paired right) side of the screen for each condition (blocked/mixed). Error bars reflect the respective standard errors. *** = p < .001

product of the probabilities of the implied responses for the
left pair member and the right pair member. For example:

P (respond ‘OO’ for a test pair of type ON) =
P (respond ‘O’ for the left pair member given a left pair member of type O) ×
P (respond ‘O’ for the right pair member given a right pair member of type N).

We computed the G2 statistic for these independence
restrictions relative to a saturated model for each participant
and then summed the G2 statistics across participants. We
evaluated its statistical significance using a bootstrapped
pb value based on 1 000 bootstrap samples to avoid biases
with the asymptotic χ2 distribution of the test statistic
due to many empty cells (see, e.g., Coolin et al., 2015).
The results confirmed that the restriction of independent
responses within paired-word trials cannot be upheld,
G2

emp(640) = 857.10, pb < .001. This suggests that
recognition decisions on paired words exhibit dependencies
and mutually influence each other.

Model selection and comparison

Although behavioral analyses indicate dependencies within
the responses to paired-words, they do not allow us to relate
these behavioral dependencies to specific cognitive pro-
cesses. To characterize the cognitive processes underlying
paired-word recognition, we relied on model-based analy-
ses. First, we selected the best-fitting models within each
model class based on the posterior model probability and
marginal likelihoods (see Table 1 for the results of the two
best fitting models and the full model per model class).

Within the GRT class of models, the best model
attributed the difference between single-word and paired-
word recognition to familiarity differences (μolds −μoldp :
M = 0.42, SD = 0.11, 95% posterior interval [PI]:
[0.24, 0.66]), such that old single words elicit higher
familiarity values (μolds : M = 2.20, SD = 0.27, 95%
PI: [1.75, 2.80]) than old paired words (μoldp : M = 1.78,
SD = 0.20, 95% PI: [1.44, 2.24]). The dependencies within

paired-word recognition are best explained by mnemonic
dependencies: A spill-over of familiarity between the two
words (μspill : M = 0.08, SD = 0.03, 95% PI: [0.02, 0.15])
and a positive correlation between the two familiarity values
of paired words (� : M = .05, SD = .03, 95% PI:
[−.01, .11]; the Supplementary Material shows the results
for all parameters).

The best fitting model within the class of 2HTM
attributed the difference between single-word and paired-
word recognition to differences in the detection probabili-
ties for old words (dos − dop : M = .10, SD = 0.02, 95%
PI: [.05, .15]), with a higher probability to detect old words
in single-word trials (dos : M = .61, SD = 0.03, 95% PI:
[.55, .68]) than in paired-word trials (dop : M = .52, SD =
0.05, 95% PI: [.44, .59]). The dependencies within paired-
word trials are due to guessing processes. More specifically,
the probability to guess ‘old’ for the right word was smaller
if the left word was new and correctly detected as ‘new’
(gldn : M = .30, SD = 0.05, 95% PI: [.20, .40]) than if the
left word was old and correctly detected as ‘old’ (gldo : M =
.41, SD = 0.05, 95% PI: [.32, .51]) with a mean difference
of M = .11 (SD = 0.05, 95% PI: [.01, .20]). Likewise, the
probability to guess ‘old’ was smaller for the left word if the
right word was correctly detected as ‘new’ (grdn : M = .35,
SD = 0.04, 95% PI: [.26, .43]) than if it was correctly
detected as ‘old’ (grdo : M = .45, SD = 0.05, 95% PI:
[.36, .56]) with a mean difference of M = .10 (SD = 0.05,
95% PI: [.01, .20]; for the results of all parameters, see
Supplementary Material).

In a second step, we compared the models across the
two model classes. The best discrete-state model provided
a better account of the data than the best continuous model,
BF2HTM, GRT = 2.9 × 104, meaning that the discrete-state
model is 2.9 × 104 times more likely than the continuous
model conditional on the observed data.

These results suggest that recognition decisions within a
paired-word recognition task are mediated through discrete
states rather than based on a continuous memory strength
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Table 1 Experiment 1: Mean [Minimum; Maximum] logarithms of marginal likelihoods (LML) and posterior model probabilities (PMP) for the
full models and the two best-fitting models for both model classes, general recognition theory (GRT) and the two-high threshold model (2HTM),
once with and once without individual differences (noID) on the restricted parameters

GRT 2HTM

Model LML PMP Model LML PMP

MGRT, Full -2644 [-2646; -2640] .005 M2HTM, Full -2636 [-2630; -2621] .007

MGRT, 1 -2638 [-2640; -2633] .238 M2HTM, 1 -2621 [-2622; -2618] .237

MGRT, 1−noID -2607 [-2608; -2604] M2HTM, 1−noID -2602 [-2604; -2599]

MGRT, 2 -2640 [-2642; -2637] .195 M2HTM, 2 -2622 [-2624; -2619] .183

MGRT, 2−noID -2601 [-2603; -2599] M2HTM, 2−noID -2590 [-2593; -2588]

For GRT, the models have the following restrictions: MGRT, Full represents the GRT model with all implemented parameters, MGRT, 1 describes a
GRT model with the restrictions bl = 0, br = 0, cs = cl , and � = 0 and MGRT, 2 includes the same restrictions as MGRT, 1 without the restriction
of � = 0. For 2HTM, the models include the following restrictions: M2HTM, Full represents the 2HTM with all implemented parameters, M2HTM, 1
describes a 2HTM with the restrictions gs = glru, and glgn = glgo, and M2HTM, 2 includes the same restrictions as M2HTM, 1 with the additional
restriction of ρ = 0. Selected models are highlighted in bold

signal. However, it is possible that neither of the two model
classes are able to quantitatively reproduce the data, such
that the 2HTM might only be the lesser of two evils. To
rule out this possibility, we checked the absolute fit of
the selected models to the data. Figure 3 juxtaposes the
observed relative frequencies for each response and trial
type and the predicted relative frequencies. The predicted
frequencies are sampled from the posterior predictive
distribution of frequencies for each selected model. As can
be seen in the figure, the major response patterns are well
accounted for by both the GRT and the 2HTM model.
In addition, we computed posterior predictive checks of
category frequencies and the variance–covariance structure
of response categories using the T1 and T2 statistics,
respectively, as described in Klauer (2010). These measures
compare how often predicted data generated from the
estimated model deviate more strongly than the observed
data from the values expected under the estimated model.
This comparison leads to a posterior predictive p-value
(ppp), where an optimal match is reflected in ppp = .5. T1
addresses deviations of the model from the mean category
frequencies for the 20 overall response categories and T2
addresses deviations from the variance–covariance matrix
(variances and covariances computed across participants)
of the 20 response category frequencies. This analysis
supported our previous conclusions as the 2HTM provided
an adequate, although somewhat improvable, absolute fit,
T
pred
1 = 13.0, T obs

1 = 21.1, ppp = .112, and T
pred
2 = 27.3,

T obs
2 = 36.7, ppp = .174, still somewhat better than the

GRT: T
pred
1 = 13.0, T obs

1 = 24.3, ppp = .045, T
pred
2 =

27.3, T obs
2 = 40.1, ppp = .110.

The Bayes factor used for model comparison weighs
model fit and model complexity to account for the fact that
a good model fit is the less impressive the more flexible the

model is. Given the comparable absolute fit shown in the
posterior predictive p-values, the very high Bayes factor in
favor of the 2HTM model means that the 2HTM provides a
substantially more parsimonious account of the data than the
GRT model (for assessments of the relative complexity of
discrete-state models and continuous models of recognition
memory, see also Klauer & Kellen, 2011, 2015.)

Discussion

Experiment 1 aimed to assess how paired-word recognition
relates to single-word recognition and which cognitive
model provides the best account of both tasks. Behaviorally,
we found that recognition in paired-word trials is worse
than what would be expected from two separate single-word
recognition decisions. Both cognitive models, the GRT and
the 2HTM, attribute this difference to depressed mnemonic
processes, suggesting that memory retrieval is impaired in
paired-word trials.

A second behavioral finding is that there exist dependen-
cies within paired-word trials. The two considered model
classes attribute the dependencies to different sources. GRT
accounts for them on the mnemonic level through spill-over
effects and a correlation between the elicited familiarity sig-
nals. In contrast, the 2HTM attributes the dependencies to
the decisional level in terms of an increased bias to guess
‘old’ for pairs in which the other word was correctly iden-
tified as old relative to pairs in which the other word was
correctly identified as new.

While both models accounted well for the major patterns
in the data, rigorous model comparisons strongly favored
the best 2HTMmodel over the best GRT model. This means
that the 2HTM model accounted for the data far more
parsimoniously than the GRT model.
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Experiment 2

Experiment 1 focused on differences between single- and
paired-word recognition and on an exploratory analysis of
dependencies within paired-word trials. Experiment 2 used
only paired-word trials in the recognition phase to eliminate
potential influences of the presence of single-word trials.
We aimed to validate the results of Experiment 1 on two
levels: Behaviorally, we expected to replicate the general
finding of the presence of dependencies within recognition
decisions involved in paired-word trials. From a model-
based perspective, we aimed to corroborate the results that
discrete-state models capture the process of paired-word
recognition better than continuous models. Additionally,
we wanted to validate the qualitative structure of these
dependencies, namely whether they occur on the mnemonic
level (as continuous models suggested) or on the decisional
level (as discrete-state models suggested).

Method

A total of 82 participants that had not participated in Exper-
iment 1 completed Experiment 2. As per preregistration
(https://osf.io/k4m8f/), we excluded two participants due to
recognition performance not significantly above chance lev-
els. The remaining 80 participants (23 male, 57 female)
were mostly students from Freiburg University with differ-
ent majors and between 18 and 42 years old (M = 24.00,
SD = 4.04). All participants received either a monetary
reward or partial course credit for participation.

As in Experiment 1, participants went through four
study-test cycles. Each study phase consisted of 68 trials,
including two trials each as recency and primacy buffers.
Within the recognition phase, participants performed 68
recognition decisions per cycle, including four initial
warm-up trials. Departing from Experiment 1, all recog-
nition blocks were pure paired-word blocks. In all other
respects, we used the same materials and procedure as in
Experiment 1.

We used the same models specified in our first
experiment, omitting all parameters related only to single-
word recognition. The analysis procedure was otherwise
identical to Experiment 1.

Results

Data preparation and behavioral analysis

As in Experiment 1, we excluded trials with responses
faster than 250ms or slower than 10 s. This resulted into a
total exclusion of 1.3% trials. Figure 5 shows the response
frequencies for each of the four pair types. Replicating
the results of Experiment 1, a goodness-of-fit test revealed

Fig. 5 Median percentages and interquartile ranges of given responses
(‘Observed’) to the respective four pair types and the predicted
frequencies of the two-high threshold model (2HTM) and general
recognition theory (GRT). NN—both words not studied (new); NO—
left word new, right word studied (old); ON—left word old, right word
new; OO—both words old. Outliers are not visualized

a significant violation of a model assuming independent
reactions to both words, G2

emp(640) = 976.0, pb < .001
(based on 1,000 bootstrap samples).

Model selection and comparison

To provide a model-based characterization of the cognitive
processes underlying the dependencies in paired-word
recognition, we relied on model-based analyses. First, we
selected the best-fitting models within each model class.
Additionally, to the two best fitting models of each model
class we included the full models of each model class
for comparison (see Table 2 for the results of the model
selection criteria). Within GRT, the full model was already
one of the two best fitting models, so only two models are
presented.

The full GRT model had the highest posterior model
probability and therefore was the most likely model within
the class of GRT. This model locates dependencies on both
the mnemonic level, through spill-over effects (μspill : M =
0.29, SD = 0.07, 95% PI: [0.16, 0.42]) and a correlation
between the familiarity signals for the two members of each
word pair (� : M = .33, SD = .07, 95% PI: [.19, .46]),
and on the decisional level, meaning that response criteria
for each word are informed by the familiarity values elicited
by the paired word (bl : M = .11, SD = 0.03, 95%
PI: [.04, .18]; br : M = .14, SD = 0.04, 95% PI:
[.07, .21]). This model is, however, closely followed by the
second-best fitting GRT model, which locates dependencies
solely at the decisional level. Figure 1 represents the full
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Table 2 Experiment 2: Mean [Minimum; Maximum] logarithms of marginal likelihoods (LML) and posterior model probabilities (PMP) for the
full models and the two best-fitting models for both model classes, general recognition theory (GRT) and the two-high threshold model (2HTM),
once with and once without individual differences (noID) on the restricted parameters

GRT 2HTM

Model LML PMP Model LML PMP

MGRT, Full -2531 [-2534; -2523] .652 M2HTM, Full -2527 [-2527; -2526] .022

MGRT, 1 -2530 [-2533; -2525] .235 M2HTM, 1 -2524 [-2524; -2523] .522

MGRT, 1−noID -2538 [-2539; -2538] M2HTM, 1−noID -2549 [-2550; -2548]

M2HTM, 2 -2525 [-2526; -2525] .117

M2HTM, 2−noID -2505 [-2505; -2504]

The following restrictions are incorporated in the models:MGRT, Full represents the GRTmodel with all implemented parameters,MGRT, 1 describes
a GRT model with the restrictions br = 0, μspill = 0, and � = 0, M2HTM, Full represents the 2HTM with all implemented parameters, M2HTM, 1
describes a 2HTM with the restrictions gldn = gldo, glgn = glgo, and ρ = 0, and M2HTM, 2 includes the same restrictions as M2HTM, 1 excluding
the restriction of glgn = glgo. Selected models are highlighted with bold font

GRT model constructed with mean group-level posterior
parameter estimates.

Consistent with the results of Experiment 1, the best
model within the class of discrete-state models attributes
dependencies between paired words to the decisional level
in terms of dependencies in guessing. More specifically,
there was a lower tendency to guess ‘old’ when the right
word was detected to be ‘new’ (grdn: M = .38, SD =
.04, 95% PI: [.29, .46]) rather than ‘old’ (grdo: M = .51,
SD = .05, 95% PI: [.41, .62]) with a difference of M = .13
(SD = .03, 95% PI: [.06, .20]). Likewise there was a lower
tendency to guess ‘old’ when the left word was guessed to
be ‘new’ (glgn: M = .43, SD = .04, 95% PI: [.35, .51])
rather than ‘old’ (glgo: M = .45, SD = .04, 95% PI:
[.37, .53]) with a difference of M = .02 (SD = .04, 95%
PI: [−.06, .10]).

In a second step, we compared the best within-class
models with each other. The best 2HTM provided a better
account of the data than the best model from the GRT
class, BF2HTM, GRT = 2.6 × 1011. This means that the best
discrete-state model is 2.6 × 1011 times more likely given
the data than the best continuous model.

Regarding absolute model fit, Fig. 5 juxtaposes the
observed relative frequencies for each response and trial
type and the predicted relative frequencies. As can be seen
in the figure, both models capture the major responses
patterns quite well. Considering the posterior predictive
model checks in terms of the statistics T1 and T2, the
full GRT model can account for the variance–covariance
structure adequately, T

pred
2 = 31.7, T obs

2 = 37.8, ppp =
.319, whereas the ability to reproduce mean category
frequencies falls off, T

pred
1 = 11.1, T obs

1 = 18.9, ppp =
.110. The 2HTM shows the same pattern as the GRT:
It recovers the variance–covariance structure quite well,
T
pred
2 = 31.9, T obs

2 = 29.3, ppp = .588, whereas the

recovery of the category frequencies falls off, T pred
1 = 11.1,

T obs
1 = 25.7, ppp = .018. Again, given the comparable

absolute fit, the very high Bayes factor in favor of the 2HTM
model means that the 2HTM achieves this fit substantially
more parsimoniously than the GRT model.

Discussion

In Experiment 2 we aimed to validate the main results of our
first experiment. Firstly, we replicated the main behavioral
finding of Experiment 1 for paired-word trials, namely a
dependency in recognition decisions on pairs of words.
Secondly, we aimed to replicate the model-based results.
Again, quantitatively, we found the discrete-state model
to account better for the data than the continuous model.
Thus, recognition decisions on paired words seem to be
mediated through discrete states. Additionally, the discrete-
state model again explained the dependencies within joint
judgments of paired-words in terms of dependencies in
guessing processes. The results within the continuous model
are less consistent. In the second experiment, it located
dependencies both on the mnemonic level, as in Experiment
1, and, unlike in Experiment 1, also on the decisional level.

General discussion

The present study aimed to provide a first systematic investi-
gation of differences between single-word and paired-word
recognition tasks. We found two main behavioral results:
Performance in paired-word recognition was lower than
what would be expected from two separate single-word
recognition decisions and, more importantly, recognition
decisions in paired-word settings were not independent
from another. To obtain a mechanistic understanding of the
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cognitive processes involved in these behavioral effects, we
relied on computational modeling in which we compared
the two dominant classes of recognition-memory models,
continuous and discrete-state models, with each other. We
found that a discrete-state model accounted for the data bet-
ter than a continuous model. The winning model attributed
differences between single- and paired-word recognition
to differences in detection probabilities and dependen-
cies between paired-word recognition decisions to guessing
processes that depend on the decision state of the other
stimulus.

Mechanisms differing between single- and
paired-word recognition

Consider first the differences in recognition performance
between single-word and paired-word recognition tests.
Both the 2HTM and the GRT attributed these to the
mnemonic level in terms of higher detection probabilities
and higher sensitivities, respectively, for the single-word
test. Given that the study phase was the same for both
kinds of test, this implies that retrieval attempts were more
efficient for single-words than for paired-words.

Existing global matching models of memory (e.g.,
MINERVA2, SAM), although not adapted for multiple-item
recognition, provide a framework for interpretation. Those
models explain a successful recognition through a sufficient
match between a memory probe and existing memory traces
(see, e.g., Hintzman, 1988; Gillund and Shiffrin, 1984). In
the paired-word trials, the probe is likely to encode features
of, and associations between, both words with the potential
to lower the overall match between the probe and memory
traces of words studied in isolation. Thus, context effects on
either the representational level or an associative level might
account for the differences in detection probability and
sensitivity. An adaptation of global-matching models for
multiple items augmented by a model of the decision stage
capturing dependencies could prove to be an appropriate
model of multiple-item recognition and help to verify
this assumption, but that is clearly a question for future
investigations.

In addition to the mnemonic differences between
single- and paired-word recognition, dependencies within
recognition decisions to paired-words might have impaired
performance on paired-word trials. Such dependencies
occurred in both experiments. The discrete-state model
accounts for these dependencies through a biased guessing
process in the state of uncertainty whereas the assumption
of independent detection processes for both words of a
pair could be upheld. Although it can be useful to use
all information available in a state of uncertainty, such a
process is suboptimal in our setting, where the recognition
decision to either word had no informational value or

validity for the decision about the other word. However,
it is interesting that those biases only occur in a state of
uncertainty and do not influence detection. Thus, as long
as there is enough evidence to reach a detection state for
either word, the decision seems not to be influenced through
irrelevant and potentially misleading information. Only in
a state of uncertainty in which no information is available
about the word to be judged (Kellen & Klauer, 2018),
our memory system appears to be swayed by suboptimal
guessing mechanisms.

The results for the continuous model paint a different
and, across experiments, less consistent picture. GRT
accounts for the observed dependencies on both the
mnemonic level through a spill-over of evidence (Exps. 1
and 2) and the decisional level through an adaptive criterion
adjustment based on the level of familiarity of the other
presented item (Exp. 2). Thus, dependencies within the
framework of GRT could be interpreted in terms of spill-
over or cognitive leakage (as mnemonic mechanism), as
Greene and Klein (2004) already surmised and/or sequential
effects on criterion settings (as a decisional mechanism),
which are, as already mentioned above, also known to
occur within single-word recognition (see Ratcliff & Starns,
2009). Based on the results of the continuous model,
it is also reasonable to assume an interaction between
mnemonic and decisional mechanisms influencing paired-
word recognition decisions. However, as discussed later, the
quantitative comparison between this continuous account
and the account delivered by discrete-state models strongly
favored the latter over the former for the present data.

Discussing the dependencies within paired-word trials,
the question might arise whether participants are able to
discriminate the different sources of memory evidence
at all or whether they instead rely on ensemble coding,
the selection of a response based on the overall elicited
memory signal (Dubé et al., 2019). A strong prediction
of such a joint-signal strategy is that individuals would
not be able to differentiate between trials in which an
old word appeared on the right side and a new word on
the left side or vice versa. Visual inspection of Figs. 3
and 5, combined with the results of previous studies using a
comparable response scheme (see, e.g., Buchler et al., 2011;
Buchler et al., 2008), reveals however that participants are
well able to discriminate the different sources of evidence.
Hence, a joint-memory-signal strategy cannot account for
the observed dependencies in paired-word trials.

Discrete and continuous accounts of paired-word
recognition

Considering the comparison between discrete-state
accounts and accounts in terms of continuous models, the
best models from each model class accounted well for the
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major response patterns in the data as shown in Figs. 3
and 5. Nevertheless, model selection using Bayes factors
revealed that discrete-state models strike the substantially
better compromise between fit and parsimony. So far, the
evidence suggests that in a simple paired-word recognition
task responses are mediated through discrete states and are
not based on a continuous memory signal.

Hence, in the case of joint recognition decisions to
multiple objects, there seems to be no benefit of relying
on continuous memory evidence. Nevertheless, this does
not necessarily imply that all recognition decisions arise
purely from continuous or discrete mechanisms. Rather, the
processes which give rise to all-or-none states of detection
may well rely on an underlying continuous signal of
memory that is discretized as determined by task demands,
response formats, and instructions (Kellen & Klauer, 2014;
McAdoo et al., 2019; 2018).

Comparison to Greene and Klein (2004)

The present experiments were in part motivated by Greene
and Klein’s (2004) experiments and their finding that
single-word performance does not predict paired-word
performance. Like in the present experiments, Greene
and Klein (2004) contrasted single-word recognition and
paired-word recognition. Unlike in the present experiments,
however, participants in their paired-word conditions were
not asked to evaluate and indicate the old/new status of each
pair member, but were given a number of more derived
response instructions such as to judge whether both words
were old or not (“both” condition) or whether at least one
item was old or not (“either” condition). This renders a
direct comparison of the present studies and Greene and
Klein’s (2004) experiments difficult. Note, however, that
the purpose of the present research was not to provide
a close replication of Greene and Klein (2004), but to
provide a process-oriented account of possible differences
between single-word and paired-word recognition, keeping
response instructions as similar as possible between the two
conditions.

It is nevertheless instructive to compare our findings
with Greene and Klein’s (2004) results in some more
detail. Greene and Klein (2004) used an individual’s
observed single-word responses to predict their responses
to word pairs by assuming that responses to word
pairs stem from two independent single-word recognition
decisions.4 These predictions were labeled as stemming
from “pseudoparticipants”. Major findings were (a) that
more “both” responses and fewer “either” responses were

4For example, the predicted hit rate for “both” responses to old–old
pairs was the square of the single-word hit rate, and the predicted hit
rate for “either” responses to old–new pairs was the product of the
single-word hit rate and the single-word correct-rejection rate.

made by real participants than by pseudoparticipants for
each trial type, whereas (b) overall accuracy did not
differ significantly between pseudoparticipants and real
participants (see Table 3).

We constructed predictions for “both” and “either” con-
ditions from the single-word data of our Experiment 1
exactly like in Greene and Klein (2004). These pseu-
doparticipant data should be comparable to Greene and
Klein’s pseudoparticipant data given that both are based
on traditional old/new response formats and instructions
and computed in the same manner. For the data from real
participants, we recoded participants’ responses. Thus, for
the “both” condition, OO responses were coded as “both”
response; for the “either” condition, ON, NO, and OO
responses were coded as “either” response. Obviously, these
data are less comparable with Greene and Klein’s (2004)
data from real participants, given that we did not actually
use “both” and “either” instructions and response formats.

Table 3 presents these data for our Experiment 1 and
Greene and Klein’s (2004) Experiment 2.5 Three findings
are noteworthy in this comparison:

1. Our pseudoparticipants and Greene and Klein’s (2004)
show similar response frequencies, as might be
expected.

2. Results for real participants diverge between Greene
and Klein’s (2004) and our data.

3. The differences in overall accuracy between paired-
word trials and single-word trials (i.e., between real and
pseudoparticipants) are, if anything, smaller in our data
than in Greene and Klein’s data (see column H − FA).

Finding 1 suggests that our data are consistent with Greene
and Klein’s data when similar conditions are compared.
Finding 2, in combination with Finding 1, suggests that
the “both” and “either” response instructions introduce
additional effects that are not induced by the old–new
instructions used here. This is an interesting issue for
further research. Considering Finding 3, note that simple
indices such as H − FA, the difference between hits
and false alarms, or d ′ do not succeed in disentangling
discriminatory ability from response biases in the case of
paired-word recognition and “both” and “either” response
coding. Finding 3 exemplifies that as a consequence,
differences in underlying discriminatory ability between
single-word and paired-word trials as documented for our
data may be masked. Disentangling the multiple response
biases and old-new discriminations implied in paired-
word recognition requires the more fine-grained response
categories employed here in combination with appropriately
extended models. Data collected with finer grain and models

5The data from Greene and Klein’s (2004) Experiment 1 are similar;
their Experiment 3 used yet other response instructions.
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Table 3 Proportion and expected proportion (pseudoparticipants) of positive responses per pair type as well as overall accuracy for Greene and
Klein’s (2004) Experiment 2 and Experiment 1 of this manuscript separately for “both” and “either” conditions

Test pair type

Condition Participants Old–Old Mixed New–New H − FA

Greene & Klein (2004) Exp. 2

“Both” Real .70 .53 .17 .29

Pseudo .53 .10 .03 .45

“Either” Real .80 .65 .18 .52

Pseudo .91 .79 .39 .44

Experiment 1

“Both” Real .55 .13 .06 .44

Pseudo .60 .15 .05 .49

“Either” Real .89 .76 .31 .49

Pseudo .93 .81 .34 .51

Old–Old—pairs consisting of two old words; Mixed—pairs consisting of an old and a new word; New–New—pairs consisting of two new words;
H − FA—difference between hit and false alarm rates

accommodating possible effects at the mnemonic level and
the decisional level are furthermore the resources required to
discriminate between different mechanisms accounting for
the observed differences between single-word and paired-
word recognition, where Greene and Klein (2004) could
only speculate.

Conclusion

Taken together, our results bear important implications for
the study of recognition memory. An implicit assumption
underlying most of recognition-memory research is that
multiple-item recognition decisions can be treated as a
sequence of independent single-item recognition decisions.
Compare that situation with preferential decision-making
research, in which axiomatic approaches explicitly formu-
late such independence assumptions (e.g., Luce, 1959) that
can then be subject to rigorous investigations (see, e.g.,
Rieskamp et al., 2006, for an overview). The results of
both our experiments strongly challenge such a notion in
recognition memory as well, as supported by behavioral and
model-based analyses.

Coming back to our introductory example, having met
people separately, recognition of these people will be better
if we meet them again separately rather than as members
of a group. If we do meet them in the context of a group
of people in a state of uncertainty, our recognition decisions
about one person will inform the judgment of the other
persons, irrespective of whether there exists a link or not.
At least where recognition is involved, each time several
independent decisions have to be made simultaneously, they
can be expected to interact. Given the theoretical links

to other domains, there is little reason to assume that
decisional dependencies as documented here are confined
to the domain of recognition memory: They may be found
in simultaneous decisions under uncertainty, whatever is the
subject matter of these decisions.
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