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An ongoing discussion in recognition memory concerns 
the question of whether decision makers have access to a 
continuous memory-strength signal when making recog-
nition decisions or whether such decisions are based on 
discrete states (for a review see Pazzaglia et al., 2013 but 
see also Batchelder & Alexander, 2013; Dubé et al., 2013). 
Theories assuming continuous memory-strength signals 
postulate that individuals have access to a graded sum-
mary of the accumulated or sampled evidence from mem-
ory (e.g., Banks, 1970; Ratcliff, 1978; Van Zandt, 2000). 
Thus, when conducting a recognition decision, as in 
deciding whether a person has been previously encoun-
tered, the decision is based on the amount of familiarity 
elicited by this person relative to a critical value. In con-
trast, theories based on discrete states acknowledge that 
there might be a continuous sampling of evidence from 
memory, but decisions are ultimately mediated via 

discrete “detect” or “uncertainty” states (e.g., Luce, 1963; 
Province & Rouder, 2012; Snodgrass & Corwin, 1988). 
Thus, in the above-mentioned case, the person is either 
detected as being known or, if not detected, one guesses 
based on contextual information. With the present study, 
we want to contribute to this discussion through replica-
tion and extension of a previously conducted test pro-
posed to discriminate those two mechanisms.
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Abstract
Does the speed of single-item recognition errors predict performance in subsequent two-alternative forced-choice 
(2AFC) trials that include an item with a previous error response? Starns, Dubé, and Frelinger found effects of this kind in 
two experiments and accounted for them in terms of continuous memory-strength signal guiding recognition decisions. 
However, the effects of error speed might just as well only reflect an artefact due to an error-correction strategy that uses 
response latency as a heuristic cue to guide 2AFC responses, elicited through confounding factors in their experimental 
design such as error-correction instructions and feedback. Using two conditions, a replication condition, replicating the 
procedure from Starns et al., and an extension condition (each n = 130), controlling for the named shortcomings, we 
replicated the error speed effect. In both conditions, speed of errors in a single-item recognition task was predictive of 
subsequent 2AFC performance, including the respective error item. To be more precise, fast errors were associated 
with decreased 2AFC performance. As there was no interaction with the factor condition, the results support the idea 
that speed of single-item recognition responses reflects the amount of memory information underlying the respective 
response rather than being used for a simple error-correction strategy to improve 2AFC performance.
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Generally, recognition describes the ability to identify 
previously experienced situations as such. Thus, in a typi-
cal recognition memory test (single-item recognition task) 
participants learn a list of words in a study phase and 
judge in a subsequent test phase whether the presented 
words have previously been studied (“old” items) or not 
(“new” items). Responses are coded in one of four 
response categories, termed hits, misses, correct rejec-
tions and false alarms: a studied word can be judged to be 
an old item (hit) or a new item (miss); a new item can be 
judged to be a new item (correct rejection) or an old item 
(false alarm).

Another frequently used paradigm is the two-alterna-
tive forced-choice (2AFC) task that differs from the sin-
gle-item recognition task with respect to the test phase. In 
the 2AFC task, two words are presented at test, one target 
and one lure. Participants’ task is to indicate which word is 
the target (Green & Swets, 1966).

To discriminate whether such decisions are based on 
continuous or discrete information is quite difficult. 
Researchers developed various methods to distinguish 
between these two possibilities using both model compari-
son methods and experimental designs evoking qualita-
tively different behavioural expectations. For example 
receiver operating characteristic curves (ROCs; Bröder & 
Schütz, 2009), first and second choice responses (Kellen & 
Klauer, 2011), tests for conditional independence (Kellen 
et al., 2015; Province & Rouder, 2012), model selection 
based on minimum description length (Kellen et al., 2013; 
Klauer & Kellen, 2015), or ranking tasks (Kellen & Klauer, 
2014) were used to discriminate between continuous and 
discrete processing of memory evidence. The results of 
these studies are mixed, some favouring continuous mod-
els and others discrete-state models.

Recently, Starns et al. (2018) investigated this question 
by combining a single-item recognition task with a subse-
quent 2AFC task. First, participants worked on a single-
item recognition task making “old” versus “new” 
judgements. Then, a 2AFC task followed, in which partici-
pants were asked to identify the target in a pair of words 
that combined an item they had misclassified in the single-
item recognition task and an item they had correctly 
responded to. The authors expected that the speed of errors 
in the single-item recognition task would predict the per-
formance in 2AFC trials that include the error items. 
Specifically, Starns et al. (2018) hypothesised that fast 
errors in the single-item recognition task are associated 
with lower performance within the 2AFC task than slow 
errors. This hypothesis rests on a theory of memory 
retrieval in which recognition decisions are based on a dif-
fusion process of sampling evidence from memory 
(Ratcliff, 1978). In this framework, fast errors—compared 
with slow errors—reflect higher degrees of misleading 
evidence elicited by a memory probe, which should affect 
decisions in the 2AFC task involving these same memory 

probes. In contrast, based on discrete accounts such as the 
two-high threshold model (2HTM; Snodgrass & Corwin, 
1988), Starns et al. (2018) predicted no differences in per-
formance of a 2AFC task between fast and slow errors.

In the following, we will elaborate on the different the-
ories and their predictions regarding fast and slow errors. 
Then, we will discuss the results of Starns et al. (2018) and 
possible confounds within their paradigm motivating the 
present study.

Continuous models

As mentioned above, continuous models assume access 
to a continuous familiarity signal as a basis for recogni-
tion decisions. For response selection, the accumulated 
familiarity needs to either reach a threshold or exceed a 
critical value. For example in signal detection theory, one 
of the first continuous recognition memory models, the 
perceived familiarity is compared with a response crite-
rion (Banks, 1970). Each time the perceived familiarity 
exceeds the criterion the response “old” is elicited, 
whereas if the familiarity falls below the criterion partici-
pants make a “new” response.

Diffusion model

One prominent example of continuous accounts, the diffu-
sion model (Ratcliff, 1978), can be understood as a 
dynamic extension of signal detection theory. In this 
account, information is accumulated in a diffusion pro-
cess. The drift rate of the diffusion process is the rate at 
which information accrues from memory and represents 
the strength of the memory signal (Ratcliff & Starns, 2009) 
comparable to the level of perceived familiarity within sig-
nal detection theory. Evidence accumulation terminates 
once the accumulated amount of evidence reaches one of 
two boundaries, an upper one associated with the “old” 
response, or a lower one associated with the “new” 
response. Thus, within this framework, the higher the drift 
rate of a specific stimulus, the higher the strength of the 
memory signal elicited by this stimulus. Consequently, the 
higher the drift rate the faster a threshold is reached and the 
associated response delivered.

Within the diffusion model, erroneous responses occur 
each time the accumulated information reaches the incor-
rect threshold. This can occur because of two mecha-
nisms. On one hand, the average drift rate can point to the 
correct threshold, but because a noisy diffusion process 
characterises the aggregation of evidence, variability 
exists within the sampling process and, hence, the incor-
rect threshold can be reached by accident (avoidable 
errors; Ratcliff, 2014). In the case of recognition mem-
ory, this could be a target word which was initially cate-
gorised as “new” but with further consideration, one 
would identify the error and correctly classify it as being 
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“old.” On the other hand, variability of the drift rates 
exists across trials. Thus, a stimulus can have a drift rate 
pointing in the direction of the incorrect threshold. In the 
case of recognition memory this could be a target which 
is not memorised, for example, due to inattention during 
study (Ratcliff, 2014). Consequently, evidence accumu-
lates towards the threshold eliciting a “new” response 
and error reaction times (RTs) would be an indicator of 
the strength of that evidence.

Therefore, under certain conditions, fulfilled in Starns 
et al.’s (2018) experiments, the speed of errors is diagnos-
tic of the drift rate likely underlying the erroneous deci-
sion.1 Specifically, fast errors are associated with higher 
drift rates pointing towards the false threshold than slow 
errors, and thus they reflect systematically misleading 
information from memory.

Based on this rationale for errors, Starns et al. (2018) 
hypothesised that fast errors in a single-item recognition 
task should on average result in lower performance within 
subsequent 2AFC trials consisting of an error item and a 
word correctly responded to compared with slow errors. 
This is because items with fast errors are likely to elicit 
stronger misleading memory information than items with 
slow errors.

Discrete-state models

Discrete-state models or threshold models of recognition 
memory have in common that responses are based on a 
combination of a number of discrete mental states, typi-
cally detection and uncertainty states (Riefer & Batchelder, 
1988). In addition, as soon as a certain state is entered, 
only the information about the state remains while all 
information about how this state was reached is lost. There 
exist different models such as the one-high threshold 
model (Blackwell, 1963), the 2HTM (Snodgrass & 
Corwin, 1988), or the one-low threshold model (Luce, 
1963). These models differ in the number and type of 
thresholds as well as associated mental states.

2HTM

The most popular threshold model is the 2HTM with three 
different states, a detection state for old words, a detection 
state for new words, and an uncertainty state (Snodgrass & 
Corwin, 1988). With a certain probability do (dn), a target 
(lure) enters the respective detection state leading to the 
corresponding response “old” (“new”). Each time detec-
tion fails, guesses determine the response out of a state of 
uncertainty. Thus, within this framework, errors only occur 
if a stimulus could not be detected correctly and the 
response is guessed incorrectly. In the case of recognition 
memory, this could be a target which is not detected as 
such and then guessed to be “new” or a lure which is not 
detected as lure and then guessed to be “old.”

Generally, it is possible to draw inferences from RTs 
to response states within the 2HTM. For example, detect-
ing a stimulus might occur faster than not detecting a 
stimulus and guessing the response (Klauer & Kellen, 
2018). However, conditional on having entered a mental 
state, responses and RTs should not depend upon further 
mnemonic evidence. Under this “information loss” 
assumption, the speed of errors arising from the uncer-
tainty state should not contain information on the under-
lying memory strength.

Thus, as errors can only occur out of the same underly-
ing state of uncertainty, this framework allows no infer-
ence about the amount of memory evidence based on 
response speed. Therefore, fast and slow erroneous reac-
tions do not differ in their informational value. Based on 
these considerations, Starns et al. (2018) predicted no dif-
ference in the performance on fast and slow error trials in 
a subsequent 2AFC task for the 2HTM.

Two-low threshold model

Starns et al. (2018) also proposed a discrete-state model 
that allows for misleading retrieval, the two-low threshold 
model (2LTM). This model has the same form as the 
2HTM discussed above, except that it allows for the pos-
sibility that a lure item could misleadingly produce the 
“detect old” state and a target could misleadingly produce 
the “detect new” state, necessitating additional parameters 
to represent the probability that these outcomes will occur. 
Under the assumption that participants respond more 
quickly from the detect states than from the more ambigu-
ous uncertainty state, the 2LTM predicts, contrarily to the 
2HTM, a relationship between single-item error speed and 
subsequent 2AFC accuracy that matches the qualitative 
pattern predicted by the diffusion model. That is, errors in 
this model are a mixture of guesses from a state of uncer-
tainty and responses based on misleading retrieval, and 
faster errors should tend to come from the latter category. 
Misleading retrieval impairs 2AFC performance, creating 
lower accuracy for trials with a fast-error word than trials 
with a slow-error word. Thus, the 2LTM, like the diffusion 
model, predicts a relationship between error speed and 
2AFC accuracy.

Findings by Starns et al. and possible 
shortcomings

As predicted by the diffusion model account, but not by 
the 2HTM, Starns et al. (2018) found that the performance 
in 2AFC trials including fast errors from the single-item 
recognition task was worse compared with the perfor-
mance in trials including slow errors.

However, in Starns et al.’s (2018) experiments, the 
2AFC task always paired one item erroneously responded 
to with one item correctly responded to in the single-item 
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recognition task, and participants were instructed to cor-
rect their previous error. Participants’ task was thus to 
identify the error item to correct their previous error by a 
correct 2AFC decision. In a state of uncertainty, partici-
pants searching for the previously misclassified item 
might then well use response latency as a heuristic cue to 
identify the likely error. To be more precise, in the 
absence of any real or valid information from memory, 
participants might utilise response latency to aid their 
decision, surmising that an item for which they previ-
ously required a long time to come to a decision is likely 
to be the item with the error. Response latency might 
thereby bias guessing processes rather than reflect under-
lying memory dynamics.

To rule out strategic effects of this kind, Starns et al. 
(2018) examined as part of their Experiment 2B the strat-
egy that participants used during the 2AFC task by means 
of a retrospective survey. In a direct question asking 
whether participants considered response times from the 
single-item recognition test to inform their answers on 
the subsequent 2AFC task, half of the participants indi-
cated that they used this strategy. This surprising out-
come strengthens the assumption that a metacognitive 
strategy of error identification based on response latency 
causes the results. Note, however, that Starns et al. (2018) 
interpreted the outcomes of the strategy survey as evi-
dence against the heuristic use of response latency to 
identify the likely error item in a state of uncertainty. This 
conclusion was based on two observations: (1) only two 
participants mentioned a latency-based strategy in an 
open-ended question that preceded the direct question 
and (2) participants who reported that they did not con-
sider the latency of their previous responses showed an 
effect of error RT on subsequent 2AFC performance that 
was statistically indistinguishable from the effect shown 
by participants who did report this strategy.

The usage of a metacognitive guessing strategy based 
on response latency could have been encouraged because 
Starns et al. (2018) implemented an error feedback within 
their design. They constructed their 2AFC trials in such a 
way that each trial consisted of an error item and a word 
correctly responded to. In addition, they informed par-
ticipants about this composition of 2AFC trials and 
instructed them to correct previously made errors.

Note that the diffusion model’s predictions in no way 
depend on the procedure of describing the 2AFC task as a 
chance to correct previous errors, nor do they depend on 
the practice of creating all 2AFC trials by pairing an item 
with a previous error and an item with a previous correct 
response. According to the diffusion model account, fast 
errors should be associated with impaired performance, 
compared with slow errors, in trials in which the error item 
is paired with an item correctly responded to. This should 
occur even if participants are given more traditional 2AFC 
instructions and even if some of the 2AFC trials contain 

words that both received a previous error or both received 
a previous correct response, meaning that the 2AFC trial 
does not provide feedback by revealing that one of the 
words must have received a previous error response.

Although the diffusion model’s predictions do not 
change when the error-feedback component of the 2AFC 
task is eliminated, previous studies showed that feedback 
can have an impact on results within memory tasks. For 
instance Malejka and Bröder (2016) showed that findings 
by Starns et al. (2008) of source memory for unrecognised 
items may have been an artefact of providing feedback, 
allowing participants to infer that they previously 
responded incorrectly to the item in question. Removing 
the feedback eliminated the evidence for source memory 
for unrecognised items, leading Malejka and Bröder 
(2016) to conclude that the effect was an artefact of the 
design providing feedback. Motivated by this preceding 
evidence, we propose an extension of Starns et al.’s (2018) 
design that removes the error feedback.

Aims and hypotheses

In the light of the shortcomings mentioned, our goals were 
twofold: first, we intended to replicate Starns et al.’s 
(2018) results, closely following their design. In particular, 
the replication condition uses the same construction of 
2AFC trials and the same error-correction instruction as 
Starns et al. (2018). Second, we implemented an extension 
condition, in which we removed the error feedback by 
using a more traditional construction of the 2AFC trials 
and omitting the error-correction instruction.

Because this study is an instance of a so-called adver-
sarial collaboration between Anne Voormann, Annelie 
Rothe-Wulf, and Karl Christoph Klauer on the one hand 
and Jeffrey J. Starns on the other hand, we pre-registered 
the experimental procedure and hypotheses prior to data 
collection. For the replication condition, both groups pre-
dicted that there would be a difference in the 2AFC perfor-
mance as a function of the speed of errors in the single-item 
recognition task such that fast errors lead to worse 2AFC 
performance than slow errors.

To assess the possibility that this effect, if it replicated, 
reflects a metacognitive strategy of error-detection on the 
basis of response latency, we introduced the extension 
condition. Jeffrey J. Starns predicted a difference in the 
2AFC performance of fast and slow errors for this condi-
tion just as for the replication condition, based on the dif-
fusion model account. Thus, significant effects of speed of 
errors are expected in both the extension and replication 
conditions. Because participants will not be in an error-
detection mode in the extension condition, Anne Voormann, 
Annelie Rothe-Wulf, and Karl Christoph Klauer predicted 
to the contrary that the effect would be eliminated if it 
relies on a metacognitive strategy of error detection. Thus, 
an interaction between speed of errors and experimental 
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condition was predicted along with a significant effect of 
speed of errors in the replication condition, but not in the 
extension condition.

Other effect patterns than the ones just considered are 
possible. For example, a pattern with no interaction due to 
no effect in both conditions as well as no interaction but a 
significant effect of speed of errors in the replication con-
dition and no such effect in the extension condition would 
be ambiguous. We therefore based our power planning on 
the interaction effect. As detailed below, this also resulted 
in satisfactory power for the individual condition-wise 
tests for effects of error speed on 2AFC accuracy so that 
the absence of individually significant effects in the repli-
cation condition or in both conditions could be clearly 
interpreted as a failed replication.

Methods

We pre-registered this study at the Quarterly Journal of 
Experimental Psychology as pre-registered report; the 
approved pre-registration protocol as well as all materials, 
analysis scripts and data files are publicly available on 
OSF (https://osf.io/ejucx/).

In general, our experimental design combined Starns 
et al.’s (2018) procedure of Experiments 1 and 2 following 
Experiment 2 as closely as possible while implementing 
slightly larger single-item recognition test blocks similar 
to Experiment 1. This permitted a more balanced construc-
tion of 2AFC trials in the extension condition. In addition, 
a pilot-study suggested slightly higher accuracies and 
slower responses for German participants in a single-item 
recognition task that thus provided fewer critical 2AFC tri-
als with previous errors for our participants compared with 
Starns et al.’s (2018) participants (see Table 1). We 
expected that introducing slightly larger study-test cycles 
compared with Starns et al.’s (2018) Experiment 2 would 
reduce performance slightly (Cary & Reder, 2003) and 
produce hit and false alarm rates that are comparable to 
Starns et al.’s (2018) Experiment 2. Apart from that, the 
design and the procedure followed Starns et al. (2018) 
with the small modifications explicated below.

Participants

In total, 268 participants took part in this study, from 
which three had to be excluded because of computer prob-
lems, two aborted the experiment prior to final data col-
lection, and three participants did not satisfy the inclusion 
criteria defined as a difference between hit rates and false 
alarm rates of at least 0.1 within the single-item recogni-
tion test. This resulted in the pre-registered number of 260 
valid datasets (n = 130 per condition). Age ranged from 17 
to 46 years with a mean of M = 23.94 years (SD = 4.89). 
Participants were recruited from the participant pool of 
the department Social Psychology and Methodology, 

University of Freiburg. All participants spoke German as 
a first language and received either partial course credit or 
a monetary reward for their participation.

To determine the number of needed valid datasets, we 
conducted an a-priori power analysis, using the observed 
effect of speed of errors on 2AFC performance reported by 
Starns et al. (2018) in their analysis-of-variance (ANOVA). 
The smallest effect size across Starns et al.’s (2018) exper-
iments for this critical effect was dz = 0.31 (range: 0.31–
0.34). Assuming a possible interaction in the direction that 
there is an effect of size dz = 0.31 in the replication condi-
tion but a null effect in the extension condition, the effect 
for the group comparison will be d = 0.31 (assuming equal 
variances in the two groups). To find an effect of this size 
given α = .05 and β = .80 in a one-tailed independent two-
sample t-test, 130 valid datasets per condition are neces-
sary. Across the replication and extension conditions, we 
thus planned to collect valid datasets from 260 partici-
pants. The power for detecting an effect of speed of errors 
with effect size dz = 0.31 will thereby be β = .97 in a one-
tailed t-test with α = .05 in each condition with n = 130.

Design

Our study implemented two conditions: a replication con-
dition and an extension condition. In both conditions, we 
presented three study-test cycles, consisting of one prac-
tice cycle and two experimental cycles. Each test phase 
included several single-item recognition blocks and subse-
quent 2AFC blocks. The two conditions differed in the 
construction and number of the 2AFC trials and in their 
instructions.

Materials and list composition

Words were randomly drawn from a wordpool consisting 
of 639 neutral German nouns taken from a study by Lahl 
et al. (2009). The words were four to eight letters long with 
ratings medium in valence (ranging from 3.5 to 6.5 on an 
11-point scale) and low in arousal (ranging from 0.5 to 4.5 
on an 11-point scale). All words were approximately 
equally frequent according to the log frequency ratings 
obtained for each word via WordGen (ranging from 0.3 to 
2.9; Duyck et al., 2004).

Table 1. Mean hit and false alarm rate and median latency 
(RT) in Starns et al.’s (2018) Experiment 2 and for 10 pilot 
participants.

Hit False alarm

 Rate RT Rate RT

Starns et al. (2018) 0.64 919 ms 0.26 1,150 ms
Pilot participants 0.74 1,030 ms 0.16 1,349 ms

RT: reaction time.

https://osf.io/ejucx/
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Departing from Starns et al. (2018), the study list con-
sisted of 28 words in the practice cycle and 80 words in the 
experimental cycles. Words were presented in groups of 
four during the study phase, the first and last group of each 
study list serving as filler words.

The single-item recognition test lists consisted of two 
blocks of 20 words each in the practice cycle and of six 
blocks of 18 words each in both experimental cycles. 
Targets and lures were counterbalanced within blocks. 
Furthermore, the first single-item recognition test block of 
each experimental cycle started with four additional warm-
up trials. Warm-up trials consisted of two targets, taken 
from the first four filler words in the study list, and two 
lures and were discarded for analysis.

In each 2AFC trial, a target and a lure were presented. 
In the replication condition, a 2AFC trial always paired 
either a miss with a correct rejection or a hit with a false 
alarm as classified on the basis of responses in the imme-
diately preceding single-item recognition task. For each 
block, as many critical trials as possible were constructed, 
as in Starns et al. (2018). In the extension condition, each 
2AFC block comprised 10 trials in the practice cycle and 
9 trials in the experimental cycles, including all possible 
pairings based on the performance of the single-item rec-
ognition task in addition to the critical trials (hit—false 
alarm; hit—correct rejection; miss—false alarm; miss—
correct rejection). For the creation of the 2AFC pairs, 
critical pairs (hit—false alarm; miss—correct rejection) 
were, however, favoured, so that there were as many crit-
ical pairs as would have been constructed in the replica-
tion condition.

The 2AFC instructions differed between conditions. 
The replication condition implemented the original instruc-
tions from Starns et al. (2018) translated into German. 
Here, participants were informed that every 2AFC trial 
consisted of one word correctly responded to in the single-
item recognition task and one word with an erroneous pre-
vious response. Furthermore, participants were instructed 
to identify and correct previously made errors. In the 
extension condition, participants were told that one of the 
words in each 2AFC trial is a studied one, the other one a 
not-studied one. Here, participants were simply asked to 
try their best to select the previously studied word.

Procedure

The experiment was programmed in C++, and one session 
lasted about 30 min. Participants were randomly assigned 
to conditions. The procedure followed the one described in 
Starns et al. (2018).

Prior to the experiment, participants provided informed 
consent. After the instructions, the study-test cycles 
started. In the study phase, words were presented sequen-
tially at screen centre for 1,900 ms. Like in Starns et al. 
(2018), each group of four study items was followed by a 

recall task cued by position for one of the four words (e.g., 
“recall the second word”). This method was used to ensure 
that participants encode all words presented during study. 
If the participant’s typed responses were incorrect, an error 
message appeared for 1,000 ms. After a blank screen for 
500 ms, the next four study items proceeded. Words 
selected for the recall task were excluded from both the 
single-item recognition task and the 2AFC task, except for 
in the practice cycle. After all study words were presented, 
the recognition task began with alternating blocks of sin-
gle-item and 2AFC trials.

In each single-item recognition trial, one word was 
presented at screen centre until a response was given. 
Participants used the “Y” and “-” key of a German 
QWERTZ keyboard to indicate old and new words. The 
response labels “ALT” and “NEU” (German for “OLD” 
and “NEW”) were visible below the stimulus aligned 
horizontally with the response keys to be used for the old/
new responses.

After each block of single-item recognition trials, par-
ticipants worked through the 2AFC task. As in Starns 
et al.’s (2018) Experiment 2, in each trial, the two words 
were presented successively for 1,000 ms each, starting 
with the left word. Then, both words were presented 
together until a response was given. This procedure should 
ensure that participants considered both words and did not 
respond based on the memory signal of only one word 
(Starns et al., 2017). The “Y” key of a German QWERTZ 
keyboard was used to indicate the left word as the target 
and the “-” key to indicate the right word. Again, labels 
signalling the response mapping were visible during the 
presentation of both words. The left/right positions of tar-
gets and lures were counterbalanced across trials of each 
block of 2AFC trials.

Data elimination and analyses

Data elimination and analysis methods, including quality 
checks, were parallel to the analyses of Starns et al. 
(2018). Additional to the individual t-tests for effects of 
speed of errors on the 2AFC performance within each 
condition, an ANOVA included the factors error speed 
(fast vs. slow) and trial type (2AFC trial consisting of 
words previously responded to “studied”—S–S vs. “not 
studied”—N–N), and the factor experimental condition 
(replication vs. extension) to investigate whether there is 
an interaction between the speed of errors and the experi-
mental conditions.

In a Bayesian hierarchical logistic regression patterned 
after the one described in Starns et al. (2018), we also 
included a possible effect of condition on slope to examine 
whether the condition has an influence on the error RT 
slope. The Bayesian hierarchical logistic regression was 
conducted in addition to the ANOVA to allow error RTs 
within single-item recognition trials to be included as a 
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continuous predictor rather than discretised as in the 
ANOVA as well as to take into account the different trial 
numbers per trial type and participant.

Results

Hit (H) and false alarm (FA) rates did not differ signifi-
cantly between both conditions (Hs: t(258) = 0.92, p = .356; 
d = 0.11, 95% confidence interval (CI) on standardised 
effect size [−0.13, 0.36]; FAs: t(258) = 1.65, p = .101; 
d = 0.20, 95% CI [−0.04, 0.45]). Mean rates were MH = .66 
and MFA = .19 in the replication condition, and MH = .64 and 
MFA = .17 in the extension condition. Furthermore, the 
number of critical 2AFC trials was comparable between 
conditions, M = 56.5, SD = 15.3 in the replication condition 
and M = 56.1, SD = 15.6 in the extension condition, 
t(258) = 0.21, p = .838; d = 0.03, 95% CI [−0.22, 0.27]. 
Critical 2AFC trials consisted of one erroneous and one 
correct single-item recognition response so that both 
responses in the single-item recognition task were either 
“studied” or “not-studied.”

Forced-choice performance

To investigate the effect of condition on the error speed 
effect, we conducted a mixed ANOVA with condition (rep-
lication vs. extension) as a between-subject factor and 
error speed in single-item recognition trials (fast vs. slow) 
and trial type (S–S vs. N–N) as within-subject factors. 
Mean percent correct in critical 2AFC trials served as the 
dependent variable. Parallel to Starns et al. (2018), we dis-
carded trials with single-item recognition decisions faster 
than 400 ms or slower than 8 s from analysis. To discretise 
error speed, we used a median split including only the 
error RTs of single-item recognition trials that were 
included in critical trials. We separately evaluated the 
median for each participant and word type (target vs. lure). 
All single-item recognition responses being smaller than 
the respective median RT were categorised as fast errors, 
while single-item recognition responses slower than or 

equal to the respective median RT were categorised as 
slow errors. Two participants from the extension condition 
had to be discarded from analyses because both committed 
only one false alarm and thus median RTs could not be 
computed. Table 2 lists the complete results of the ANOVA. 
In the following, we will focus on the effects relevant for 
our hypothesis and on significant effects.

As can be seen from Table 2, the ANOVA revealed no 
effect of condition, ηg

2 = .002, and 95% CI = [0.00, 0.03], 
indicating that there was no significant 2AFC perfor-
mance differences between conditions, P(correct| replica-
tion) = .66, SDRep = .09, P(correct | extension) = .65, and 
SDExt = .09. Replicating the results of Starns et al. (2018), 
there was a significant effect of error speed on 2AFC per-
formance, ηg

2 = .021 and 95% CI = [0.0002, 0.07]. 
Performance in fast error trials, P(correct | fast error) = .64, 
SD = .17, was depressed compared with performance in 
slow error trials, P(correct| slow error) = .69, SD = .16. 
Importantly, there was no interaction between condition 
and error speed, ηg

2 = .0003, 95% CI = [0.00, 0.02], reveal-
ing that the conditions did not differ significantly in the 
size of the effect of error speed on 2AFC performance 
(see Figure 1). Conducting two planned t-tests to evaluate 
the effect of error speed on 2AFC performance within 
each condition using an adjusted alpha of α = .025 to cor-
rect for multiple tests revealed a significant effect of error 
speed in both the replication, t(129) = 4.44, p < .001, 
dz = 0.36, and 95% CI = [0.15, 0.57], as well as the exten-
sion condition, t(127) = 4.53, p < .001, dz = 0.52, and 95% 
CI = [0.27, 0.76]. In both conditions, performance in fast 
error trials, P(correct | fast error, replication) = .63, 
SDRep = .11, P(correct | fast error, extension) = .62, 
SDExt = .12, is worse than in slow error trials, P(correct | 
slow error, replication) = .68, SDRep = .10, P(correct | slow 
error, extension) = .68, SDExt = .11.

In addition to these effects central to our research ques-
tion, there was a significant effect of trial type, ηg

2 = .090 
and 95% CI = [0.03, 0.17], driven by more incorrect 
responses in 2AFC trials combining a miss and correct 

Table 2. Results from a mixed ANOVA on proportion correct in two-alternative forced-choice trials including condition as 
between-subject factor (replication vs. extension) and trial type (studied–studied (S–S) vs. not-studied–not-studied (N–N)) and 
error speed (fast vs. slow) as within-subject factors.

MSE F(1,256) ηg
2 p

Condition 0.03 1.26 0.002 .26
Trial type 0.02 106.83*** 0.09 <.001
Condition × trial type 0.02 4.22* 0.004 .04
Error speed 0.03 22.21*** 0.02 <.001
Condition × error speed 0.03 0.36 0.0003 .55
Trial type × error speed 0.02 3.8 0.003 .052
Condition × trial type x error speed 0.02 0.04 <.0001 .84

ANOVA: analysis of variance; MSE: mean squared error; F: F-value; ηg
2: generalised η2; p: p-value.

*p < .05.
***p < .001.
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rejection, P(correct | N–N) = .61, SD = .14, than in 2AFC 
trials combining a false alarm and a hit, P(correct| 
S–S) = .71, SD = .19. This might reflect the fact that misses 
result from unsuccessful encoding or retrieval, while false 
alarms only involve misleading retrieval. As noted by 
Starns et al. (2018), the diffusion model predicts higher 
accuracy on S–S than N–N trials with typical parameter 
values in recognition tasks. Furthermore, trial type inter-
acted significantly with condition, ηg

2 = .004 and 95% CI 
= [0.00, 0.03]. Again, using an adjusted alpha of α = .025 
for two post hoc t-tests, the effect of trial type was signifi-
cant within both the replication, t(258) = 8.32, p < .001, 
dz = 1.03, and 95% CI = [0.77, 1.29], as well as the exten-
sion condition, t(254) = 5.06, p < .001, dz = 0.63, and 95% 
CI = [0.38, 0.89]. In both conditions, there were more 
incorrect responses in N–N trials, P(correct | N–N trials, 
replication) = .61, SDRep = .10, P(correct | N–N trials, 
extension) = .62, SDExt = .09, than in S–S trials, P(correct | 
S–S trials, replication) = .73, SDRep = .13, P(correct | S–S 
trials, extension) = .70, SDExt = .15. Because participants 
tended to make only a few false alarms, all results involv-
ing S–S trials have to be interpreted with caution.

Bayesian hierarchical logistic regression

We now turn to analyses that use single-item error RT as a 
continuous predictor in a logistic regression instead of just 
classifying trials as “fast” or “slow.” We used a hierarchi-
cal Bayesian approach that matches the one reported by 
Starns et al. (2018).

Model details. The model predicted 2AFC accuracy on 
each trial with the following equation

logit p i es ert cs crt eci ert crtjk j j jk j jk j jk jk( ) = + + +

where j indexes a particular participant and k indexes a 
particular trial. p denotes the probability of a correct 
response, i the intercept, es the slope for error RT, cs the 
slope for correct RT, and eci the interaction in error and 
correct RT slopes. ertjk and crtjk are z-scores of the log-
transformed error and correct single-item RT for the 
forced-choice item with a previous error and correct 
response. Following Starns et al. (2018), we took log RTs 
to attenuate the positive skew in the distributions and con-
verted them to z-scores to aid interpretation of the logistic 
slopes.2 We z-transformed RTs for each participant, trial 
type, and previous response type (correct and incorrect) 
separately. To ensure stable estimates for participants with 
low trial counts for a particular type of error (e.g., someone 
who almost never made false alarms), the standard devia-
tions for the z-scores were based on all error trials (for ert) 
or correct trials (for crt) from the respective participant 
pooled across targets and lures. Due to this procedure, all 
participants could be included in the Bayesian hierarchical 
logistic regression.

As in Starns et al. (2018), we estimated all of the logis-
tic regression parameters separately for S–S and N–N tri-
als. This corresponds to the following logistic regression 
equation for a given trial k within a given participant j

logit p i r di es r des ert

cs r dcs crt

jk j jk j j jk j jk

j jk j

( ) ( ) ( )= + + +

+ +( ) jjk

j jk j jk jkeci r deci ert crt+ +( )

where all parameters starting with a d represent the differ-
ence in parameter values between N–N and S–S trials and 
rjk codes the trial type for participant j on trial k with S–S 
coded as 0 and N–N coded as 1. (All other symbols have 
the same meaning as in the previous equation.)

Our model assumed that the logistic regression 
parameters followed Gaussian distributions across par-
ticipants, and we estimated separate distributions for the 
replication and extension condition to evaluate the effect 
of condition. Each of the 8 participant-level parameters 
(4 logistic parameters × 2 trial types) had a separate 
mean (μ) and standard deviation (σ) defining this across-
participant distribution for the two conditions (replica-
tion and extension). We index the across-participant 
parameters with subscripts corresponding to the type of 
regression parameter and superscripts for the condition; 
for example, µi

Rep  is the mean of the across-participant 
distribution of intercept parameters in the replication 
condition collapsed over both trial types. We omit the 
condition superscript for estimates that combine infor-
mation from both conditions.

Figure 1. Mean (dots), 95% confidence intervals (whiskers), 
and distributions of percentage correct in two-alternative 
forced-choice performance in critical trials per trial type 
and condition (replication vs. extension). S–S denotes trials 
consisting of a previous false alarm and hit (both responses 
“studied”), N–N trials denotes trials consisting of a previous 
miss and correct rejection (both responses “not studied”). 
The category fast combines trials with reaction times (RTs) 
faster than median RT and category slow combines trials 
with RTs equal to or slower than median RT. The dashed line 
represents chance performance.
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Following Starns et al. (2018), we used uninformative 
priors on the parameters for the across-participant distribu-
tions: Gaussian distributions with M = 0 and SD = 100 for 
the μ parameters and uniform distributions from 0.05 to 10 
for the σ parameters.3 We used JAGS to sample from pos-
terior distributions. For each model, we ran 4 MCMC 
chains that each supplied 2,500 samples from the posterior 
distribution after the results were thinned by taking every 
100th sample. The goal of thinning was to ensure that 
effective sample size (ESS) for all critical parameters was 
similar to the number of samples stored in the output files 
due to a reduction of autocorrelations between two succes-
sive retained samples. ESS estimates for average logistic 
parameter values were at or above 8,427. The Gelman–
Rubin statistic (Gelman & Rubin, 1992) was R  ⩽ 1.01 for 
all of the parameters we report (Brooks & Gelman 1998). 
We computed 90% posterior intervals (PIs) by taking the 
.05 and .95 quantiles of the posterior samples, and we dis-
cuss any effect with a PI that excludes zero (meaning that 
there was at least a 95% chance of a non-zero effect in the 
specified direction).

Logistic results. The most critical results involve the slope 
on error RT, es. Figure 2a shows posterior distributions for 
the average error slope across participants in the replica-
tion (µes

Rep ) and extension (µes
Ext ) conditions. Both condi-

tions provided strong evidence for a positive relationship 
between error RT and 2AFC accuracy, indicating that 
slower single-item error responses had a higher probability 
of a correct response in the subsequent 2AFC test. Con-
trary to our expectations, the sample provided some evi-
dence that the error slope was lower in the replication 
condition, MdRep = 0.12, 90% PI = [0.07, 0.17], than the 
extension condition, MdExt = 0.18, and 90% PI = [0.13, 
0.23]. However, the posterior interval on the slope differ-
ence included zero, Md = −0.06, and 90% PI [−0.13, 
0.02], so we conclude that there was essentially no differ-
ence between the conditions. Most critically for our pur-
poses, the results show clear evidence against the idea 
that the extension condition would eliminate or substan-
tially reduce the error speed effect on subsequent 2AFC 
performance. Figure 2b shows the posterior for error RT 
slope collapsed across conditions (and trial type). The 
median, Md = 0.15, as well as the range of posterior slope 
values, 90% PI = [0.11, 0.18], indicates that the current 
error speed effect was very similar to the one reported by 
Starns et al. (2018) for Experiment 2 (Md = 0.15, 90% PI 
= [0.09, 0.21]).

In the following, we will discuss a few additional 
parameter results that were highlighted by Starns et al. 
(2018). For a complete depiction of the results, we refer 
interested readers to the OSF analysis files (https://osf.io/
ejucx/). The results provided suggestive evidence that the 
error RT slope was lower for S–S trials than for N–N trials 
(posterior medians of MdS-S = 0.13 and MdN-N = 0.17, 

respectively), but the posterior interval on the difference 
included zero, 90% PI = [−0.11, 0.03]. Thus, there seems 
to be no meaningful trial-type effect on error RT slope. As 
in Starns et al. (2018), and as predicted by all known deci-
sion models, we observed a negative relationship between 
single-item recognition RT for correct responses and 
2AFC accuracy. The parameter for the across-participant 
average slope on correct RT (µcs) indicated a clear negative 
relationship, posterior Md = −0.26 and 90% PI = [−0.30, 
−0.23]. This effect indicates that faster correct responses 
on single-item recognition trials predicted higher 2AFC 
accuracy when the item reappeared in a 2AFC trial. As 
with the error slope, the correct slope was closer to zero for 
S–S than N–N trials (posterior medians of MdS-S = −0.23 
and MdN-N = −0.30, respectively). The 90% posterior inter-
val on the difference excluded zero, but included some val-
ues that could be considered functionally null [−0.15, 
−0.003]. Therefore, we cannot make a confident inference 
that there is a meaningful trial-type effect on correct RT 
slope.

Posterior distributions for the across-participant aver-
age intercept coefficient (µi) were higher for S–S trials, 
MdS-S = 0.93, and 90% PI = [0.87, 1.00], than N–N trials, 
MdN-N = 0.45, and 90% PI = [0.41, 0.49], with clear evi-
dence that this was a meaningful difference, 90% PI on 
difference [0.40, 0.56]. These estimates correspond to the 
overall proportion correct on the 2AFC task of .72 and .61 
for S–S and N–N trials, respectively. Starns et al. (2018) 
demonstrated that the diffusion model predicts higher per-
formance for S–S trials with parameter values that are 
typical for recognition memory tasks. We will discuss the 
reasons behind it in the section “Discussion”.

Figure 2. Posterior distributions for the average error RT 
logistic regression slope (µes) across participants separately for 
(a) replication and extension condition as well as (b) collapsed 
across groups.

https://osf.io/ejucx/
https://osf.io/ejucx/
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Exploratory inspection of predictions for logistic 
point estimates

Before collecting data, we created an additional OSF pre-
registration that also documented predictions for the logis-
tic slope on error RT (https://osf.io/ejucx/). The predictions 
came from model simulations informed by the logistic 
regression results from Starns et al. (2018). Simulation 
code and detailed methods are available on OSF. The sim-
ulation used a signal detection model to determine the 
number of 2AFC trials for each simulated participant, 
which we assumed would produce a realistic distribution 
of trial counts across participants. To check this assump-
tion, we reran the prediction simulations using the actual 
trial counts for each participant in the current experiment. 
This produced nearly identical results compared with the 
original simulations.

Figure 3 shows the distribution of predicted error RT 
slopes for the “no effect” and “replicating effect” hypoth-
eses, with vertical lines marking the observed slope coef-
ficients. The coefficients were produced by pooling trials 
across participants and getting the maximum likelihood 
estimate for the slope parameter, which is the same method 
used for each simulated experiment in the prediction simu-
lations. The results from both conditions were much more 
consistent with predictions based on a “replicating effect” 
than a “null effect” hypothesis. The degree of support for 
the two hypotheses can be quantified by taking the likeli-
hood ratio from the prediction distributions at the observed 
slope value. The slope estimate in the replication condition 
was about 5,000 times more likely for the “replicating 
effect” hypothesis than the “no effect” hypothesis, and the 
estimate in the extension condition was over a million 
times more likely under the “replicating effect” hypothesis 

than the “no effect” hypothesis. Thus, the results provide 
very strong evidence against a null effect in both condi-
tions. These results mirror the conclusions from the 
Bayesian modelling, but they also show that we antici-
pated the magnitude of the error slope effect.

Discussion

The aim of the present study was to evaluate whether the 
effect of error speed in a single-item recognition response 
on the accuracy of a subsequent 2AFC task is based on 
misleading memory information or evoked through an 
error-correction strategy. Introducing an extension condi-
tion in which confounding aspects of the experimental 
design were eliminated, we replicated the effect of error 
speed in a single-item recognition response on accuracy in 
a subsequent 2AFC task applying two different statistical 
methods: one using error RT as a dichotomous factor and 
another using error RT as a continuous predictor. Both 
tests indicated that faster errors in a single-item recogni-
tion task go along with a decreased subsequent 2AFC per-
formance in trials composed of a previous error and correct 
response. Based on these results, we can conclude that the 
effect of error speed is not eliminated by de-emphasising 
error correction and adding forced-choice trials with two 
words that were both correctly classified on the earlier 
single-item trials. This point is perhaps best supported by 
Figure 3, which shows that the observed logistic slope in 
the extension condition was much more consistent with 
our predictions for a replicating effect of error speed than 
for a null effect of error speed. This result also indicates 
that the finding is not unique to the particular methods of 
the Starns et al. (2018) study, and thus provides evidence 
against the idea that the effect is produced by an RT-based 
strategy for correcting error responses. However, it is also 
possible that the methods in the extension condition did 
not disrupt the error-correction strategy as we intended.

Starns et al. (2018) originally investigated the occur-
rence of the error speed effect as a critical test to evaluate 
whether recognition errors can be based on misleading evi-
dence in addition to ambiguous evidence (i.e., failed 
retrieval). In the following we will elaborate on the differ-
ent mechanisms allowing an error speed effect.

Misleading evidence as source of the error 
speed effect

In the framework of the diffusion model (Ratcliff, 1978), 
the occurrence of the error speed effect can be explained by 
a higher amount of misleading information elicited by fast 
errors compared with slow errors (Starns et al., 2018). The 
idea is that the value of familiarity is accumulated over time 
for each word. The more evidence exists either to the cor-
rect or to the incorrect response, the faster a response is 
elicited. Thus, both the speed of errors and the speed of 
correct responses in a single-item recognition task should 

Figure 3. Distributions of predicted error RT slopes for a “no 
effect” hypothesis (solid line) as well as a “replicating effect” 
hypothesis (dashed line) assuming an effect size based on the 
Starns et al. (2018) results. Vertical lines mark the observed 
maximum likelihood slope coefficients for the replication and 
extension condition.

https://osf.io/ejucx/
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be predictive of the probability of a correct response in a 
subsequent 2AFC trial that includes items from the single-
item recognition task (Starns et al., 2018). This can be con-
cluded as the same accumulating mechanisms underlie 
correct and incorrect responses. But, contrarily to error 
RTs, faster correct responses in a single-item recognition 
task should result in a higher accuracy on subsequent 2AFC 
task. Although we did not include speed of correct responses 
as a factor in our ANOVA, correct RTs were included in the 
logistic regression. Evaluating the slope of correct RTs, the 
effect appears in the theoretically meaningful direction. 
This strengthens the assumption that the error speed effect 
is induced through the accumulation of misleading infor-
mation from memory for recognition decisions.

Additional to the error speed effect, Starns et al. (2018) 
predicted based on the diffusion model an interaction 
between error speed and trial type as long as the proportion 
of avoidable errors is lower for targets than for lures.4 A 
higher proportion of avoidable errors should lead to a higher 
proportion of 2AFC trials that can generally be corrected 
and thus to a higher overall performance as well as a smaller 
error speed effect. Therefore, next to an overall smaller per-
formance, which is evident in our study through the main 
effect of trial type as well as the lower intercept, they pre-
dicted the error speed effect to be higher in 2AFC trials 
involving a previously misclassified target (N–N trials) than 
in trials involving a previously misclassified lure (S–S tri-
als). Starns et al. found no evidence for a difference of the 
error speed effect across trial types and noted this as a failed 
prediction of the diffusion model. In our study, the interac-
tion slightly failed to reach significance in the ANOVA (see 
Table 2) and the posterior intervals for the interaction within 
the logistic regression included zero. Nevertheless, the 
effect went in the direction predicted by the diffusion model. 
The failure to detect the effect might be caused by the small 
size of the effect. However, other mechanisms also impact a 
possible interaction as an increase in memory for targets due 
to multiple presentation, once in the study phase and once in 
the single-item recognition test, and a misleading memory 
trace for lures in the 2AFC task created by the previous 
appearance in the single-item recognition task.

Mistaken detection as source of the error 
speed effect

In the framework of discrete-state models, the most promi-
nent example, the 2HTM, cannot account for the error speed 
effect as mentioned already in the introduction and would 
require modification as explained in the next section. This is 
because in the 2HTM all recognition errors within a single-
item recognition task result from the same underlying 
uncertainty state (Province & Rouder, 2012; Snodgrass & 
Corwin, 1988). RTs in the framework of RT-MPTs (RT mul-
tinomial processing trees) are explained as the sum of the 
process times leading to the respective response as well as 
encoding and response execution times (Klauer & Kellen, 

2018). Thus, within this framework, RTs can only reflect 
response certainty as long as different underlying mental 
processes can result in the same response which is given for 
correct (they can result out of correct detections or correct 
guesses) but not for incorrect responses. Therefore, the 
2HTM can account for the relationship between correct RTs 
in single-item recognition and subsequent 2AFC perfor-
mance but not for the relationship with error RTs.

Starns et al. (2018) discussed a version of discrete-state 
models which can in principle account for the error speed 
effect, the 2LTM. This model incorporates mistaken detec-
tion as well as incorrect guessing as possible mechanisms 
underlying recognition errors. And because two different 
processing paths can underlie errors in this model, the 
2LTM can account for the error speed effect in the frame-
work of RT-MPTs: Assuming that detection is on average 
faster than not detecting and guessing, as it was demon-
strated in Klauer and Kellen (2018), regardless whether it 
is a mistaken or a correct detection, fast errors should 
result mostly out of a mistaken detection while slow errors 
should result mostly out of incorrect guesses.

In addition, within the 2LTM the proportion of correct 
2AFC responses in fast error trials allows some conclusions 
about the amount of mistaken detections. If fast errors con-
sist only of mistaken detection, performance should be at or 
below chance performance, because incorrectly detected 
items can only be corrected in subsequent 2AFC responses 
if paired with a correctly detected item. However, some 
mistaken detections might result within the subsequent 
2AFC task in a different discrete state, guessing or even 
correct detection, increasing the probability of a corrected 
2AFC response. In addition, we used a median split to cat-
egorise fast and slow errors. Thus, if the proportion of mis-
taken detection is low, fast errors will also include incorrect 
answers based on guessing, lifting performance on 2AFC 
trials above chance levels, while still being lower than for 
slow errors, if and when mistaken detection at least occa-
sionally appears in the 2AFC trials. As is evident from 
Figure 1, 2AFC performance is above chance performance 
for most participants for both fast misses (N–N trials) as 
well as fast false alarms (S–S trials) revealing that the pro-
portion of mistaken detection seems to be low.

Discrete versus continuous mediation of 
recognition decisions

Regarding the ongoing discussion of whether recognition 
decisions are mediated through discrete states or are based 
on a continuous memory-strength signal, no clear conclu-
sions can be drawn based on our results as both the diffu-
sion model, through misleading evidence, as well as the 
2LTM, through mistaken detection, can account for the 
present results. Nevertheless, the 2HTM in its current form 
has difficulties explaining the error speed effect. The error 
speed effect indicates that some targets (lures) can elicit 
strong misleading evidence from memory suggesting 
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misleadingly that they are lures (targets). This leads to fast 
errors in the single-item recognition test and to low accu-
racy in the subsequent 2AFC test. The 2HTM does not 
include a mechanism for misleading memory evidence, so 
that the 2HTM seems falsified.

However, even under the 2HTM, evidence from mem-
ory would be expected to be misleading for targets not 
attended to during study. Targets which were not attended 
to during study and as a consequence were not encoded in 
memory should be expected to function as lures despite 
their nominal status as targets. As a result, such targets 
would elicit misleading evidence in favour of their being 
lures, whatever the model that mediates recognition deci-
sions. Similarly, considering lures, target-lure similarity 
could function as a comparable mechanism for lures. Lures 
being sufficiently similar to studied targets could elicit a 
response from memory similar to that evoked by targets 
(Brainerd & Reyna, 1990) and hence elicit misleading evi-
dence in favour of their being targets, whatever the model 
that mediates recognition decisions. For such reasons, it 
would be interesting for future research to investigate 
whether these two manipulations, attention during study 
and/or target-lure similarity, moderate the error speed 
effect for targets and lures, respectively.

Conclusion

We found a clear relationship between the speed of error 
responses in single-item recognition and accuracy in forced-
choice recognition in both the replication and extension con-
dition. Thus, the results are consistent with the predictions of 
the diffusion model and the 2LTM, which assume that fast 
errors tend to be associated with stronger misleading evi-
dence than slow errors, but are not consistent with the 2HTM 
without additional assumptions. The results also show that 
de-emphasising error correction and including forced-choice 
trials does not eliminate the error-speed effect, suggesting 
that the effect is not dependent on an error-correction strat-
egy engendered by the Starns et al. (2018) paradigm.

Furthermore, regardless of whether the error speed is 
correlated with the strength of misleading memory infor-
mation (continuous models) or the likelihood of mistaken 
detection (2LTM), the type of information used seems to 
be item-specific and stable across the two tasks to some 
extent. Thus, some targets seem to be processed similar to 
lures, perhaps because they were not attended to during 
study, and some lures seem to be processed similar to tar-
gets, perhaps because they are associated to other studied 
targets as per Brainerd and Reyna’s (1990) gist memory. If 
this account is correct, manipulating target-lure similarity 
as well as participant’s attention during study should be 
found to moderate the present effect of error speed.
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Notes

1. This reasoning only holds for certain parameter constel-
lations. Starns et al. (2018) assessed these parameter con-
stellations within a simulation and found that there exists a 
correlation between the speed of errors and the two-alterna-
tive forced-choice (2AFC) performance only if the propor-
tion of avoidable errors is low.

2. Unfortunately, Starns et al. (2018) neglected to mention 
the transformations that they applied to the reaction time 
(RT) data. Their data are publicly available at https://osf.
io/w72pp/ and can be used to verify that the logistic results 
reported in the article are based on participant-level z-scores 
for log RTs. The OSF page for the current project also 
includes a pre-registered prediction simulation that used the 
same RT transformation (https://osf.io/ejucx/).

3. Starns et al. (2018) used uniform priors ranging from 0 to 10 
for σ parameters. But because JAGS has sampling problems 
when allowing σ to range from 0 upwards, we adjusted the 
lower boundary while keeping the prior nearly as uninform-
ative as in the original manuscript. In addition, we increased 
the number of final samples slightly, compared with Starns 
et al. (2018) to achieve more accurate parameter estimates.

4. As discussed by Starns et al. (2018), fits of the diffusion model 
to recognition data consistently show that targets have a higher 
proportion of drift rates in the “wrong” direction (towards the 
threshold for an incorrect response) than lures, both because 
the mean of the drift rate distribution tends to be closer to zero 
for targets than for lures and because the drift rate distribution 
tends to be more variable across trials for targets than for lures. 
This means that a higher proportion of errors for targets (tar-
gets called “new”) are unavoidable with additional retrieval 
time compared with errors for lures (lures called “old”). When 
drifts are in the wrong direction, taking extra time just tends to 
produce stronger support for the wrong answer.
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