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Predictivity of system delays shortens human response time$
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a b s t r a c t

System delays considerably affect users' experience and performance. Research on the psychological
effects of system delays has focused on delay length and variability. We introduce delay predictivity as a
new factor profoundly affecting user performance. A system delay is predictive when its duration is
informative about the nature of consecutive interaction events. We report an experiment (N¼122) where
short delays were differently distributed across two alternative target stimuli in a choice response task.
We manipulated variability and predictivity of delays. For one group of participants the delays were of
constant duration. For three other groups the delays were variable, but differed in predictivity. They were
either non-predictive, probabilistically predictive (they predicted the targets with a probability of 0.8), or
deterministically predictive. Performance with constant delays was superior to performance with
variable non-predictive or with probabilistically predictive delays. Surprisingly, participants with
deterministically predictive delays outperformed participants in all other groups. This has important
implications for interface design, whenever there is some degree of freedom in scheduling system delays.
Best performance is achieved with predictive delays, but only when deterministic predictivity can be
achieved. Otherwise, constant delays are to be preferred over variable ones.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

When interacting with a computer, users often encounter
waiting times between their input and the computer's response.
These delays are commonly referred to as system delays (Selvidge
et al., 2002; Szameitat et al., 2009) or system response times
(Dabrowski and Munson, 2011; Schleifer and Amick, 1989). System
delays are, on one hand, caused by constant properties of the
system such as processing speed, network bandwidth or the
complexity of the requested computation. On the other hand a
number of transient factors influence system delays, such as
network congestion, background processes, or a variety of other
factors (Seow, 2008). Research on Human Computer Interaction
(HCI) has shown that system delays can enormously influence
users' experience and performance (Ceaparu et al., 2004; Nah,
2004; Thum et al., 1995). Although, due to a tremendous increase
in computational processing speed, system delays are negligible in
some contemporary HCI interfaces, they are still a major cause for
users' discomfort and low performance in others (e.g., the Internet,

see also Rose et al., 2009; Seneler et al., 2009). Many recent studies
have investigated how the negative effects of delays can be
managed, or (if possible) avoided by interface design (Branaghan
and Sanchez, 2009; Galletta et al., 2006; Krejcar, 2009).

Two important factors determining the effects of delays on
users' experience and performance are the delays' lengths, and
their variability (Kuhmann, 1989; Kuhmann et al., 1987; Schaefer,
1990). Before introducing a third factor – predictivity – we briefly
review previous literature on delay length and variability.

1.1. The length of system delays

There is an almost universal consensus in the literature that long
waiting times are detrimental to users' performance and satisfaction
(Martin and Corl, 1986; Schaefer, 1990; Seow, 2008; Simoens et al.,
2011). Particularly, long waiting time in internet applications do
considerably affect performance and lead to user frustration. Thus,
loading time is a major issue in quality of service in the context of
internet applications (Liaw and Huang, 2006). Even in domains with
much shorter delays, like computer games, delays have been shown
to negatively affect performance (Szameitat et al., 2009). Occasion-
ally, performance improvements by lengthening of delays have been
described (e.g., Barber et al., 1983; Sellier and Chattopadhyay, 2009).
These instances seem, however, to be restricted to contexts where
duration of a process signals trustworthiness, like, for example,
online-payment mechanisms.
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Thus, designers should, if possible, reduce the length of system
delays, in order to increase user performance and satisfaction.
These findings are corroborated by numerous studies in cognitive
psychology, showing that response times to target stimuli increase
with the length of preceding warning intervals of constant dura-
tion, except for very short (o300 ms) intervals (e.g., Leonhard
et al., 2012; see Los and Schut, 2008; Müller-Gethmann et al.,
2003, for reviews). These studies typically apply the foreperiod
paradigm (Niemi and Näätänen, 1981). In this paradigm a target
stimulus is preceded by a task irrelevant warning stimulus. The
duration between warning and target stimulus – referred to as
foreperiod – systematically affects performance (Rolke, 2008; Rolke
et al., 2007; Rolke and Hofmann, 2007; Seibold et al., 2011; Seibold
et al., 2011). However, when durations vary randomly between
trials, performance increases with foreperiod duration (Los and
Horoufchin, 2011; Steinborn and Langner, 2011; Steinborn et al.,
2010; Steinborn et al., 2008; Steinborn et al., 2009). Yet, overall,
responses are on average slower for variable than for constant
foreperiods (Cardoso-Leite et al., 2009; Los et al., 2001; Mattes and
Ulrich, 1997).

1.2. Variability of delays

The findings concerning behavioral effects from variable foreper-
iods in basic cognitive psychology have been confirmed in applied
research with human–computer interfaces. The variability of delays
the user encounters in human–machine interaction can considerably
affect performance and satisfaction. System delays are referred to as
constant when all system responses follow the preceding user input
after one and the same time interval. System delays are referred to as
variable, when the user is confronted with more than one possible
delay duration. Variability can come in different degrees. Roast (1998)
has defined the degree of variability as the span between the shortest
and the longest possible interval duration (see also Fischer et al.,
2005). It is a well-established finding in basic human performance
research that choice responses are on average faster after constant
than after variable delays (Cardoso-Leite et al., 2009; Wundt, 1874, see
above). Since the early days of ergonomic research, this finding has
been validated in several studies in human–machine interaction
(Awramoff, 1903; Weber et al., 2013). HCI research has shown that
increased variability has detrimental effects on user satisfaction
(Fischer et al., 2005) and performance (Weber et al., 2013). Weber
et al. (2013), for example, manipulated delay variability in an E-Mail
program. Users' response latencies significantly increased with
increasing delay variability.

1.2.1. Reducing variability: shortening and lengthening
As delay variability has negative effects on user experience and

performance, designers should attempt to minimize variability in
HCI interfaces. There are several ways to reduce variability. One
option is obviously the reduction of extraordinarily long delays,
like, for example, internet-download times. In order to reduce
variability, such reduction must be specific to long delays, in the
sense that already short delays are not also shortened (Roast,
1998). As the delays are caused by factors inherent in the system,
delay reduction requires some kind of technical optimization of
the computational process that causes long delays. Such technical
optimizations, however, are beyond the scope of HCI interface
design, and are, thus, not the focus of the present study.

A technically much less demanding way of reducing variability
is the selective lengthening of short delays. This is the approach
taken by Weber et al. (2013). In that study, for one group of
participants, interaction with an email program was unpredictably
interrupted by delays of 7 different durations. In another group,
5 of the possible durations were lengthened in a way that all

delays could now have only 2 different lengths. The selective
lengthening of delays considerably improved participants' perfor-
mance. Likewise, Sellier and Chattopadhyay (2009) suggested to
selectively add delays to unusually short web-page loading times to
avoid the impression that “something is not right” with the web
pages. Selective lengthening has the advantage that no sophisticated
technical improvement is required. No computational process must
be optimized. Delays must only be added in appropriate places.

It has, however, the major disadvantage that it also prolongs
the total interaction time with the system. This issue becomes
particularly problematic with regard to user performance and user
frustration. An important reason to reduce variability is to improve
user performance in the sense of speeding up users' responses (see
Szameitat et al., 2009; Weber et al., 2013). It is, however, unlikely that
the delays added to reduce variability will be compensated by the
times saved by shorter user response latencies (though there are
presently no systematic investigations on this issue). However, in
Weber et al.'s study, due to the longer delays, total interaction time
was longer in the low variability condition, although users' response
latencies were reduced. Nevertheless, user satisfaction was not
decreased in the condition with on average longer waiting times.

1.2.2. Reducing variability: scheduling
Another means for reducing variability is scheduling of delays.

As described above, changing the obtainable system speed per se
is beyond the scope of interaction design. However, scheduling
enables interaction designers to speed up system response times
by optimizing the use of processing power (Blazewicz et al., 2007).
Scheduling requires that there are at least some degrees of free-
dom concerning the point in time when an interaction has to take
place during the computational process. Scheduling is obviously
not possible when the processing capacities of the system are at
any time exclusively devoted to processing one input of one
individual user. This is, however, the model implicitly or explicitly
assumed by most traditional models informing temporal varia-
bility research in HCI (e.g., Roast, 1998). Consequently, scheduling
has not been considered as an option to reduce variability.

Most modern computer systems are, however, not covered by
those models. Due to the growing application of parallel comput-
ing, it is often the case that different processes or different users
share a single processor or a set of processors. In such scenarios
the need for some kind of scheduling emerges (Szameitat et al.,
2009). The interface designer has some degree of choice how to
distribute processing time over interaction events.

For example, in many programs' download and installation
procedures, dialogs with the user are scheduled parallel to the
download. Users provide information about the installation path,
program settings etc. while the program is already downloading.
This renders the system's delays less variable compared to situa-
tions with one long delay during the download and several almost
instantaneous dialog interactions before or after (see Seow, 2008).
Another example is an algorithm, developed by Pons (2006),
which reschedules processing capacity from fast loading to long
loading web pages, in order to reduce delay variability.

Scheduling combines the advantages of shortening and length-
ening delays, which were discussed above. On the one hand, it
makes system delays less variable without making computational
processing technically faster. On the other hand, rescheduling
avoids adding empty delays during which no processing takes
place. Thus, variability can be reduced without artificially length-
ening the total interaction time. Scheduling allows a system
designer to homogenize intervals (e.g., by separating long delays
and uniting short ones), and to also manipulate regularity between
delays and interaction-events.

R. Thomaschke, C. Haering / Int. J. Human-Computer Studies 72 (2014) 358–365 359



Author's personal copy

1.3. Predictivity of system delays

Previous studies that investigated the effects of delays on user
performance did not take into account the relations between
system delays and the types of system response. Yet in real life
human computer interactions, system delays and system
responses stand in various systematic prediction-relations. In this
paper we introduce a systematic conceptual classification of such
relations, and at present the first empirical test of these relations'
effectiveness on user performance.

In many interaction contexts the duration of the delay preced-
ing a system's response is informative about the nature of the
system's response. When, for example in a search interface, error
messages are usually displayed faster than hits, the system delays
predict the type of the following system response. We refer to
delays that are informative about the next system response as
predictive delays.

Predictivity of a delay can be contrasted with predictability. We
refer to a delay as predictable, when its duration can be predicted
by previous events – be it a preceding system response, or a user
response. Delays are predictable when, for example, the user's
responses are correlated with consecutive delays, like when
complex requests are followed by longer processing time than
simple requests. Predictivity and predictability are inverse con-
cepts: predictive delays predict, and predictable delays are pre-
dicted. Basic research on temporal expectation has shown that
humans are sensitive to interval predictivity (Thomaschke and
Dreisbach, 2013; Wagener and Hoffmann, 2010; Wendt and Kiesel,
2011) as well as to interval predictability (Correa et al., 2004; Coull
and Nobre, 1998; Haering and Kiesel, 2012; Kingstone, 1992;
Lawrence and Klein, 2013).

In the present paper we focus on the behavioral effects of
predictivity. While variability is a direct property of the set of
delays itself, independent of how the delays are distributed across
system's responses, predictivity is a property of the relation of the
set of delays to the system's responses. However, predictivity
requires at least some degree of variability. Thus, constant delays
cannot be predictive, by definition. Except for that restriction,
variability and predictivity of delays can be manipulated indepen-
dently of each other, because they refer to different aspects of a
computational system.

Predictivity can also be manipulated in different degrees. We
define the degree of predictivity of a given set of delays, as the
strength of correlation between the delays and the types of system
responses immediately following the delays. Consider, for exam-
ple, a system with two possible system responses (e.g., error, or
success), and two possible delays.1 When, these delays are
correlated by 0.5 with events, both responses are equally likely
after both delays. The delays are non-predictive in this case. When
the correlation is higher, for example 0.8, then the length of the
delays carries some probabilistic information about the following
event. After the shorter delay, one of the responses is more likely,
after the longer delay, the other one is more likely. In such a
situation, we refer to the set of delays as probabilistically pre-
dictive. When one of the delays is always followed by one and the
same system's response, and the other one is always followed by
the other response, then the correlation is 1, and the set of delays
is referred to as deterministically predictive.

Many real computer systems include delays which are to some
degree predictive. For example, the probability that a Web page

will load successfully decreases continuously after navigating to
the URL, until an error message becomes more likely (Seow, 2008).
A study by Shahar et al. (2012) has revealed that users exploit
system delays to infer the functional state of a computer system.

Previously it has been demonstrated that humans are sensitive
to predictivity (Roberts et al., 2011; Thomaschke et al., 2011a, 2011b;
Watanabe et al., 2008, see above). However, little is known about the
effects of delay predictivity on user performance. The present study
investigates whether probabilistically or deterministically predictive
delays lead to faster response times. As total delay time is kept
constant over different predictivity conditions (it is just scheduled
differently among system's responses), faster user response times
would mean shorter over alltask completion times.

1.4. Overview of the present study

In the present study we investigate for the first time whether
predictivity of system delays speeds up users' responses. Further-
more we investigate how potential gains in users' response speed
by delay predictivity are related to the known detrimental effects
of delay variability.

As this is the first step in researching delay-predictivity effects
on user performance, we have chosen one of the simplest inter-
action tasks in HCI research: in a binary choice reaction task,
participants had to classify easily identifiable stimuli by key press
responses. We manipulated the variability and predictivity of
delays between groups of participants.

Two groups with constant delays were compared to three
groups with variable delays. According to previous research on
delay variability, constant delays should lead to faster responses
than variable delays (Cardoso-Leite et al., 2009; Roast, 1998). The
three variable groups differed in predictivity. In a non-predictive
group, two possible delays were equally distributed over both target
stimuli. In a probabilistically predictive group, the same delays
predicted the upcoming target with 80% probability. In a determinis-
tically predictive group, delays were deterministically coupled with
targets. If predictivity shortens human response time, we would
observe better performance in the two predictive groups than in
the non-predictive group. When the degree of predictivity matters,
we would observe better performance in the deterministically,
compared to the probabilistically, predictive group.

2. Method

2.1. Design

We devised a binary forced choice paradigm with warning
intervals – here referred to as delays – between target stimuli. Two
possible delays (400 ms and 1000 ms) were differently distributed
over target stimuli (see Table 1) for different groups of participants.
One group experienced only the 400 ms delay throughout the
experiment, while another group experienced only the 1000 ms delay.
In the following we refer to both groups together as the constant
group. The same delays – 400 ms and 1000 ms – have been used for
the three variable delay groups. Each of the delays appeared in half of
the trials, in these groups. The sequence of delays was randomly
determined. The variable groups differed, however, with regard to the
frequency of delay-target combinations. In the non-predictive group,
each target was equally often paired with the long and with the short
delay. In the probabilistically predictive group, one target appeared
frequently (at 80% of its occurrences) after the short delay, while the
other target was frequent after the long delay. In the deterministically
predictive group, one of the targets appeared only after the short
delay, while the other target appeared only after the long delay. The

1 For the sake of simplicity we deal only with binary sets of delays in this study.
But the concepts introduced here can, in principle, be extended to each number of
possible delays. Whether the empirical findings of the present study would also
generalize to non-binary task scenarios is, however, an open question (see
discussion section).
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association between target and delay was counterbalanced between
participants.

2.2. Participants

Participants were students of the University of Würzburg. They
were paid 6 €, or received course credit. Participants were naïve as
to the purpose of the experiment and were randomly allocated to
experimental groups. 102 from 122 participants were female. The
mean age was 22.43, SD¼3.2. They had normal or corrected to
normal vision. See Table 1 for allocation of participants to groups.

2.3. Apparatus and stimuli

The experiment was run on a standard PC, equipped with a 170 0

CRT monitor. The delays were triggered by pressing the left or
right mouse button with the right hand. Responses to the target
were given on two response keys with the left hand. Target stimuli
were a black star or a black triangle (both 1.5 cm�1.5 cm) on a
white background. The fixation cross was a black “þ” sign in the
font Arial (0.5 cm�0.5 cm).

2.4. Procedure

Each trial started with presentation of the fixation cross.
Participants were to press any mouse button whenever they felt
ready to. Immediately after pressing the button the font-weight of
the fixation cross was changed from regular to bold. After a delay
of either 400 ms or 1000 ms, the fixation cross was substituted by
the target stimulus. Participants had to respond as fast as possible
by pressing the left or right response key according to the target
stimulus. The assignment of target stimuli (star or triangle) to the
left or right key was counterbalanced across participants. With the
response the target disappeared. When participants responded
timely and correctly, the next trial started after 800 ms with
appearance of the fixation cross. When participants chose the
wrong key an error message (“Falsche Taste!”, German for “Wrong
key!”) appeared accompanied by an error sound. When partici-
pants did not respond to the target within 700 ms, the error
message “Bitte schneller!” (German for “Faster, please!”)
appeared, accompanied by an error sound.

Four groups of participants differed in variability and predic-
tivity of delays (see above). The experiment consisted of 12 main
blocks of 100 trials each. In the main blocks the order of targets
and delays randomly varied from trial to trial except in the
constant group, who only experienced one delay and varying

targets. The experimental blocks were preceded by 2 short base-
line blocks, which served to calculate decrement scores (see
below). The baseline blocks comprised of 24 trials each. The delays
in both baseline blocks were constant. In one block, only the short
delay was used, while only the long delay was presented in the
other baseline block. The order of baseline blocks was counter-
balanced between participants. There were self paced breaks
between baseline and between experimental blocks. The total
duration of the experiment was about 50 min for the constant
group with short delays, about 55 min for the variable groups, and
about 60 min for the constant group with long delays.

3. Results

3.1. Data preparation

3.1.1. Calculation of the individual RT baseline
The participants with long constant delays and with short

constant delays were collapsed into one experimental group,
because the distribution of delays over events was the same for
both groups.

As outlined in the methods section, we calculated a RT baseline
for each participant from the two short baseline blocks. The first
four trials of each baseline block were excluded. For the remaining
20 trials, the percentages of errors (wrong or too late responses)
were calculated. A one-way ANOVA confirmed that there were no
group differences regarding error rates in the baseline blocks,
F(3,118)¼1.724, p¼ .167. Error-trials and trials following error-trials
were removed. Per participant and per baseline block, there were
on average 17.69 trials (SD¼2.47; range: 8–20) left from the
originally 24 trials. From these remaining trials, the average
response speed over both baseline blocks has been calculated as
a RT baseline for each participant. The average RT baselines for the
constant delay group, M¼396.86 ms, SD¼53.88, the non-
predictive group, M¼397.64 ms, SD¼49.54, the probabilistically
predictive group, M¼391.49 ms, SD¼40.69, and the deterministic
group, M¼402.62 ms, SD¼39.01, did not differ significantly from
each other, F(3,118)¼0.233, p¼ .873.

3.1.2. Preprocessing of RT data
Parts of the first experimental block might have been under the

influence of the baseline phase (although it was very short). In the
conditions with variable delays, this new temporal variation might
have been surprising for the participants, in contrast to the group
with constant delays, because all groups experienced constant
delays in the short practice phase. Because this potential surprise
could have confounded our comparison between groups, we
excluded the first block from the analysis. We also removed the
first five trials of each experimental block, to minimize potential
variation from the self paced breaks between blocks.

Participants committed on average 4.588% errors, SD¼4.31.
As the error scores did not significantly differ between conditions,
F(3,118)¼0.351, p¼ .788, we removed error trials from the RT
analysis. We also removed trials following error trials, because
RTs after errors are usually strongly affected by the preceding error
(Laming, 1968; Steinhauser and Kiesel, 2011).

For the RT analysis, we further removed all trials with RTs
deviating from the participant's mean RT more than 2.5 SDs (as
recommended by Bush et al., 1993; Whelan, 2008). These were
1.8% of all trials.

To calculate each participant's mean RT-decrement from base-
line (the focus of our analysis), we simply subtracted each
participant's mean RT in experimental blocks from that partici-
pant's baseline RT.

Table 1
Number of trials in each group and experimental condition.

Experimental group Delay
(ms)

Target 1 Target 2 Sum
(%)

Constant group (short) (N¼25) 400 600 600 100
1000 0 0 0

Constant group (long) (N¼25) 400 0 0 0
1000 600 600 100

Variable non-predictive group
(N¼24)

400 300 300 50

1000 300 300 50

Variable probabilistically
predictive group (N¼24)

400 480 120 50

1000 120 480 50

Variable deterministically
predictive group (N¼24)

400 600 0 50

1000 0 600 50

Sum (%) 50% 50%

R. Thomaschke, C. Haering / Int. J. Human-Computer Studies 72 (2014) 358–365 361



Author's personal copy

3.2. Effects of group on user response time

Absolute mean RTs and mean RT decrement (relative to the
pre-experimental baseline), are displayed in Fig. 1. We analyzed RT
decrement, because this score is not dependent on inter-subjective
baseline difference in response speed. However, we always report
the analogous results for absolute RT in parentheses. A one-way
between subjects ANOVA showed that experimental group
affected RT decrement, F(3,118)¼13.981, po .001 (F¼9.484,
po .001, for absolute RT). Bonferroni corrected t-tests showed that
participants in the deterministically predictive group outper-
formed the participants in each of the remaining three groups;
against the constant delay group,MD (mean difference)¼29.37 ms,
p¼ .018 (MD¼17.57 ms, p¼ .708), against the non-predictive group,
MD¼60.68 ms, po .001 (MD¼59.56 ms, po .001), and against the
probabilistically predictive group MD¼59.91 ms, po .001 (MD¼
46.42 ms, p¼ .002). RT reduction in the group with constant delays
was significantly higher than in the non-predictive group,
MD¼31.31 ms, po .009 (MD¼41.89 ms, p¼ .002), and in the prob-
abilistically predictive group, MD¼30.54 ms, p¼ .009 (MD¼
28.85 ms, p¼ .054). The only non-significant difference was
between the non-predictive and the probabilistically predictive
group, MD¼0.77 ms, p4 .999 (MD¼13.14 ms, p4 .999).

An analogous ANOVA for mean error rates was not significant,
F(3,118)¼0.351, p¼ .788. None of the Bonferroni-corrected post
hoc tests between conditions yielded a significance lower than
p¼ .999.

For the probabilistically predictive group, we conducted an
additional within-subjects analysis: by comparing absolute RTs on
frequent combinations of delay and target (80% of trials) with
absolute RTs on infrequent combinations (20% of trials), we tested
whether participants formed temporal expectancies about targets.
Mean RT was shorter for frequent combinations, M¼380 ms, than
for infrequent combinations, M¼404 ms, t(23)¼10,037, po0.001.

3.3. Effects from group and delay duration on user response time

Analyses in the previous subsection allow conclusions about
the overall performance gains of some delay-event distributions
over others. However, in order to investigate how these gains have
cognitively been produced, we also analyzed the data separately
for the 400 ms and the 1000 ms delays. Note, that for the
following delay-specific analyses, the constant group included
only half of the participants than in the main analyses, because
half of the constant group was exposed to the short delay only, and
the other half to the long delay only (see Table 1). However, in the
main analysis, the constant group included twice as many parti-
cipants as each one of the variable groups (due to collating
participants with constant 400 ms delays and with constant
1000 ms delays). Consequently, all groups in the following analysis
have about the same size.

For the 400 ms delay, the ANOVA for RT decrement with the
factor Experimental group was significant, F(3,93)¼8.041, po .001
(F¼5.864, p¼ .001, for absolute RT). However, the Bonferroni-
corrected post hoc tests showed a different pattern, especially
for the relation between the deterministic and the other groups.
The deterministically predictive group was only better than the
probabilistically predictive group, MD¼31.24 ms, p¼ .024
(MD¼17.76 ms, p¼ .820). There was only a marginally significant
tendency towards an advantage over the non-predictive group,
MD¼29.18 ms, p¼ .054 (MD¼28.06 ms, p¼ .133), and a non-
significant disadvantage compared with the constant group,
MD¼41.72 ms, p4 .999 (MD¼18.74 ms, p¼ .734). However, perfor-
mance improvement in the constant delay group was again
significantly higher than in the non-predictive, MD¼59.91 ms,
po .001 (MD¼46.42 ms, p¼ .002), and in the probabilistically
predictive group, MD¼43.78 ms, p¼ .001 (MD¼36.49 ms,
p¼ .016). As in the main analysis, the difference between non-
predictive and the probabilistically predictive group was not
significant, MD¼2.06 ms, p4 .999 (MD¼10.30 ms, p4 .999).
An analogous ANOVA for error rates was not significant,
F(3,93)¼0.538, p¼ .657. None of the Bonferroni-corrected post
hoc tests reached a corrected p value below .999.

For the probabilistically predictive group, we compared fre-
quent with infrequent combinations at the 400 ms delay. As in the
main analysis, mean RT was shorter for frequent combinations,
M¼394 ms, than for infrequent combinations, M¼405 ms, t(23)¼
3.063, p¼0.005.

The ANOVA for the 1000 ms delay was also significant,
F(3,93)¼19.072, po .001 (F¼12.532, po .001, for absolute RT).
With regard to the deterministic group, the results of the
Bonferroni-corrected post hoc tests were in line with the main
analysis: participants in the deterministically predictive group
outperformed on average participants in all other groups; against
the constant delay group, MD¼70.75 ms, po .001 (MD¼53.36 ms,
p¼ .006), against the non-predictive group, MD¼91.74 ms, po .001
(MD¼90.63 ms, po .001), and against the probabilistically predic-
tive group,MD¼87.68 ms, po .001 (MD¼74.39 ms, po .001). How-
ever, deviating from the main analysis the constant group was not
faster than the non-predictive, MD¼20.99 ms, p¼ .806 (MD¼
37.26 ms, p¼ .124), or the probabilistically predictive group,
MD¼17.11 ms, p4 .999 (MD¼21.02 ms, p4 .999). The probabilisti-
cally predictive and the non-predictive group did not differ
significantly in their response time reduction, MD¼3.89 ms,
p4 .999 (MD¼16.24 ms, p4 .999).

An analogous ANOVA for error rates was not significant,
F (3,93)¼0.207, p¼ .892. None of the post hoc tests reached a
Bonferroni-corrected p value below .999.

For the probabilistically predictive group, we compared fre-
quent with infrequent combinations also at the 1000 ms delay.
As with 400 ms, mean RT was shorter for frequent combinations,

Fig. 1. Mean RT decrement from baseline (upper panel), and absolute mean RT in
baseline and experimental blocks (lower panel), in dependence on experimental
group. Error bars represent 1 SEM.
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M¼365 ms, than for infrequent combinations, M¼402 ms, t(23)¼
6.849, po0.001.

4. Discussion

4.1. Summary of results

We have compared four groups of participants, performing a
forced choice task interrupted by system delays. We manipulated
the variability and predictivity of the delays. One constant-delay
group (with no variability and, hence, no predictivity) was com-
pared with three variable delay groups, differing only in the
degree of delay predictivity (non-predictive, probabilistically pre-
dictive and deterministically predictive). Our study had three
purposes. The first aim was to confirm previous findings that
delay variability has a detrimental effect on user performance
(measured in RT). Our second aim was to investigate, for variable
delay conditions, whether predictivity of delays has a potentially
positive effect on user performance. Third, we wanted to elucidate
how such potential positive effects would cognitively emerge by
determining at which delay duration the effects are produced.

We confirmed the performance advantage for constant delays
over variable delays, evident from previous literature (Cardoso-
Leite et al., 2009; Wundt, 1874). Performance in the constant delay
group was clearly superior to performance in the non-predictive
variable delay group.

With regard to predictivity, probabilistic predictivity did not
yield significant performance gain. Although participants formed
temporal expectancies in the probabilistically predictive group,
evidenced by faster responses to temporally expected than to
temporally unexpected targets (see also Thomaschke et al., 2011;
Wagener and Hoffmann, 2010), this did not result in an overall
improved performance. The performance gain by temporally
expected trials was compensated by performance losses in tem-
porally unexpected trials. However, with deterministic predictivity
performance was significantly better than in all other groups,
including the constant delay group. This means that the positive
effects of deterministic predictivity outweighed the negative
effects of variability.

Separate analyses for both delay durations revealed that the
performance advantage of the deterministic group over all other
groups were primarily due to the long 1000 ms delay. At the short
400 ms delay, responses with deterministically predictive delays
were only faster than responses with probabilistically predictive
delays, but did not significantly differ from the other groups.

4.2. Practical implication

One apparent application of our results lies in the evaluation of
existing computer human interfaces. When interfaces differ
mainly in the distribution of delay time, the interface with
constant delays is to be preferred over interfaces with variable
delays. This holds, however, only when the variable delays are not
deterministically predictive: an interface with variable delays
where the different interaction events are always preceded by
individual characteristic delays is to be preferred over an interface
with constant delays. This arrangement leads to fastest user
response times, with equal overall system delay times.

Our results can, however, also serve as a guideline in designing
interfaces, in order to decrease overall task completion time by
reduction of user response time via scheduling of system delays.
Scheduling refers to systematically allocating system processing
time to different tasks. Most current computer systems apply
some form of scheduling (Blazewicz et al., 2007). Scheduling has
to integrate several constraints. Some are related to the system

(e.g., limited availability of parallel processors at a time), others are
related to needs of the user (e.g., readiness of an agent to receive
the next call in a call center environment).

One type of user-related constraints regards ergonomically
optimal system-delay structures. Based on previous research, the
most important one of these constraints for scheduling algorithms
was: schedule the processing resources in a way that the system-
delays for each user are approximately constant (Seow, 2008). We
suggest that an additional scheduling constraint should be: if you
can schedule the processing resources in a way that system delays
for each user are deterministically predictive, make them deter-
ministically predictive. If only probabilistic predictivity can be
achieved, do not schedule delays predictively, but rather aim for
constant delays.

When by means of scheduling variable system delays can be
allocated deterministically to distinct system responses, without
the involvement of additional delays, the average reduction in user
response time per interaction event can be estimated around
60 ms (decrement score-difference between variable non-
predictive and variable deterministically predictive group). For
simple repetitive tasks with an average delay around 700 ms (as in
the present study) and a user response time below 500 ms, this
would yield an overall task time reduction of about 3 min per
hour, without any overall reduction of system delays. Note,
however, that the implications of our results might be restricted
to binary delay-event associations, that means, to systems where
two different system response classes can be deterministically
scheduled to two delay durations (see next subsection).

4.3. Cognitive mechanisms

The main finding of our study might seem surprising at first
sight. Deterministic predictivity leads to such a drastic reduction in
response times that it even outweighs the well-established
response time increase by variability. Being sure about what will
happen at a certain time helps performance more than being
unsure when something will happen impairs performance. How-
ever, a closer look at the distribution of performance at the
individual delay durations shows how the substantial performance
gain by deterministic predictivity was achieved, but it also points
to a potential limitation of generalizability.

At the short 400 ms delay the benefits of deterministic pre-
dictivity are rather moderate. The condition with deterministic
predictivity is on a par with constant and with the non-predictive
group. It had only a significant 30 ms advantage over the prob-
abilistically predictive condition. This suggests that participants
utilize the deterministic knowledge about the short delay to some
degree. Although they cannot be sure whether a signal will appear
at 400 ms, they exactly know which symbol it would be at 400 ms.
Thus they prepare the response to that symbol to some degree,
though they might need to change their preparation when the
short delay elapsed without presentation of a symbol. This
tendency is, however, not significant for each between group
comparison (note, that mean response times for 400 ms are
numerically higher in the deterministic predictive group than in
the constant group), and in magnitude much smaller than the
large overall benefit of deterministic predictivity.

This benefit is almost exclusively caused by performance
differences at the longer, 1000 ms, delay. At this delay participants
in the deterministically predictive group can be sure when the
symbol will appear and which symbol it will be. Thus, the task
changes from a choice response task to a simple response task.
Responses on single tasks are known to be much shorter than on
choice tasks (Wundt, 1874). This is an advantage which the
deterministically predictive group has over all other groups,
including the constant group. Inspection of Fig. 2 shows that the
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overall benefits of predictivity can be to a large degree ascribed to
this combined time and event determination at the 1000 ms delay.

This explanation does, however, point to a potential limitation
of the present findings. As the benefit from predictivity seems to
rely on the response certainty at the long delay, it might be that
the benefit is confined to a binary response situation, or more
precisely, to a situation where the longer delay is associated to
only one response. In a situation where multiple (e.g., two of four)
responses are scheduled deterministically to the late delay, the
response set would be reduced when shorter delay had elapsed,
but it would still be a choice task. Thus we speculate that the
benefits would be rather similar to the ones observed at 400 ms in
the present study.

4.4. Questions for further research

The present study is, to our knowledge, the first investigation
into the effects of delay predictivity on computer users. Despite
showing a substantial effect of delay predictivity, our investigation
was focused on just one aspect of users' experience and behavior
(productivity measured in user RT), and on only one type of computer
user interaction (classification of system output) among many.

Concerning other possible dependent measures, several pre-
vious studies found strong increasing effects from delay duration
on users' annoyance (Fischer et al., 2005; Planas and Treurniet,
1988; Williges and Williges, 1982) and detrimental effects on
perceived quality of the computer system (Bhatti et al., 2000;
Hoxmeier and DiCesare, 2000; Ramsey et al., 1998). One might
speculate that predictivity of system delays might lead to higher
perceived quality and lower annoyance with computer systems,
because users can better synchronize their behavior with the
system. This can, however, not be directly inferred from the
present study, but would instead require a more specialized
investigation.

The analysis in the present study has focused on performance
instead of affective measures. Note, however, that we have not
found any effects of predictivity on correctness of responses. This
is in line with numerous previous studies on the effects of delay
duration on performance in simple tasks (MacKenzie and Ware,
1993; Martin and Corl, 1986; O’Donnell and Draper, 1996), finding
also no effects on error rates. When, on the other hand, tasks were
more complex, delay duration had substantial negative effects on
correctness (Barber et al., 1983; Kohlisch and Kuhmann, 1997;
Schaefer, 1990; Thum et al., 1995). It would be an interesting topic
for further research, whether predictivity of delay can also affect
correctness when tasks are more complex than merely choice
responses.

Another important issue to be investigated in relation to the
present findings is determining their boundary conditions. We
have provided results from an 80% and from a 100% predictive
condition. Performance in the 80% condition has not shown any
advantage over the 50% (i.e., non-predictive) condition, while 100%
predictivity lead to a substantial improvement. It needs to be
investigated whether manipulations between 80% and 100% would
lead to a gradual increase of performance or whether only full
deterministic predictivity would facilitate responses. Put another
way, whether a small amount of deviating delay-event combina-
tions would prevent the cognitive benefits of deterministic pre-
dictivity or not.

5. Conclusions

We have shown that variable system delays lead to longer user
response times than constant delays, except when the duration of
these delays predicts the type of the following system response in
a deterministic fashion. In the latter case, user responses are even
significantly faster than with constant delays. These results have
implications for human computer interfaces where system delays
can be scheduled with respect to consecutive interaction events.
Delays should be variable and should be deterministically asso-
ciated with individual interaction events. If this is not possible,
constant delay should be preferred. This guideline would reduce
total task completion time by reduction of user response time
without any changes in total system delay time. It remains to be
explored whether this guideline also generalizes to system delays
as long as about one second, and to tasks more complex than
simple binary classification.
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