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Objective: An experiment was conducted to 
investigate the impacts of length and variability of 
system response time (SRT) on user behavior and user 
experience (UX) in sequential computing tasks.

Background: Length is widely considered to be 
the most important aspect of SRTs in human–computer 
interaction. Research on temporal attention shows that 
humans adjust to temporal structures and that performance 
substantially improves with temporal predictability.

Method: Participants performed a sequential task 
with simulated office software. Duration and variability, 
that is, the number of different SRTs, was manipulated. 
Lower variability came at the expense of on average 
higher durations. User response times, task execution 
times, and failure rates were measured to assess user 
performance. UX was measured with a questionnaire.

Results: A reduction in variability improved user 
performance significantly. Whereas task load and failure 
rates remained constant, responses were significantly 
faster. Although a reduction in variability came along with, 
on average, increased SRTs, no difference in UX was found.

Conclusion: Considering SRT variability when 
designing software can yield considerable performance 
benefits for the users. Although reduced variability comes 
at the expense of overall longer SRTs, the interface is not 
subjectively evaluated to be less satisfactory or demanding. 
Time design should aim not only at reducing average SRT 
length but also at finding the optimum balance of length 
and variability.

Application: Our findings can easily be applied in 
any user interface for sequential tasks. User performance 
can be improved without loss of satisfaction by selectively 
prolonging particular SRTs to reduce variability.

Keywords: system response times, temporal vari-
ability, temporal attention, subjective task load, waiting 
times, human–computer interaction, user behavior, user 
experience

Introduction
In a seminal study, Kubovy and Pomerantz 

(1981) stated that one dimension of human per-
ception has largely been neglected, even though 
it is absolutely essential to human perception 
and action: time.

In computing systems, people encounter 
time in the form of system response times 
(SRTs), which are defined as the time elapsed 
from entering a command until its completion 
(Miller, 1968). For example, when one clicks on 
the “Save” button or on a hyperlink, the system 
needs some time to process the task before the 
prompt window asking where to save the file 
appears or before the linked file or webpage is 
loaded. SRTs are determined by system charac-
teristics, such as processing capacity and net-
work bandwidth, as well as situational factors, 
such as the complexity of the computational 
processes at a given time and processor or net-
work load. SRTs can affect user response time 
(URT), the time the user needs to perceive and 
process the computer output and enter a further 
command after the system has responded, by 
two determinants: the average length of the 
SRTs and the variation of SRTs.

SRT Duration

Early studies on SRTs focused on the impact 
of SRT length on user performance. From con-
ditioning experiments of the 1950s, Miller 
(1968) derived a critical upper SRT boundary 
of 2 s for human performance within one task, 
which has been widely diffused in application 
(Nielsen, 1999; Shneiderman & Plaisant, 2009). 
Participants had to search for a blank target 
space between two letters, mark it, correct it, 
and wait for the next trial, which had two differ-
ent average SRT durations (2 or 8 s) and two 
different variability modes (1 fixed SRT vs. 7 
SRTs). Although task execution time (TET) did 
not depend on SRT duration, failure rate 
decreased with increasing SRTs, but at the same 
time, physiological and subjective stress levels 
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increased (see also Schaefer, 1990; Schleifer & 
Amick, 1989).

However, there is also evidence that does not 
support a reduction of SRT length. No perfor-
mance differences were found between short and 
long SRTs (5 vs. 10 s) when programmers, debug-
ging computer code, waited for the next line of 
code to be editable (Dannenbring, 1983). Further-
more, users have been shown to adopt different 
strategies on the speed–accuracy continuum 
depending on the pace of the interface (Teal & 
Rudnicky, 1992). Fast interfaces were found to 
increase error and stress in simple routine tasks 
(Kohlisch & Kuhmann, 1997) and slow response 
speed (Thum, Boucsein, Kuhmann, & Ray, 1995; 
Zijlstra, Roe, Leonora, & Krediet, 1999). In some 
studies (Kuhmann, Schaefer, & Boucsein, 1989; 
Zijlstra et al., 1999), performance advantages 
were even found with short disruptions versus 
continuous interaction without disruptions.

The aforementioned evidence can be 
accounted for by Seow’s (2008) classification 
of SRTs. Seow suggests that users form expec-
tations of the speed of response of a computing 
system depending on certain types of tasks. In 
simple tasks, such as key presses, delays of 
more than 100 to 200 ms will feel interruptive. 
An immediate response—0.5 to 1 s—is expected 
in tasks such as a mouse click to view the next 
page on the screen. More complex interactions 
will be perceived as continuous in time ranges 
from 2 to 5 s. At SRTs of 7 to 10 s, the user will 
begin to give up on the task if no feedback 
occurs. Likewise, more and more evidence sug-
gests that the time a user is willing to wait for a 
task largely depends on a multitude of factors, 
such as the complexity of the task (Caldwell & 
Wang, 2009; Dabrowski & Munson, 2011); 
environmental factors, such as time pressure 
(Caldwell & Wang, 2009); and the expertise of 
the user (Caldwell, 2008).

In sum, extended SRTs are, in general, 
assumed to negatively affect speed as well as 
the accuracy of task execution and user satisfac-
tion because the man–machine interaction pro-
cess is interrupted. However, as computer 
systems and networks increase in speed, appli-
cations and the number of processes become 
more resource demanding, and network 
resources are not evenly available to different 

users, the question remains of how to cope with 
inevitable delays (Dabrowski & Munson, 2011). 
Changing the variability of SRTs may be a way 
to do so.

Variability of SRTs

Although the SRT duration has been exten-
sively investigated, the variability of SRTs for 
the same task has not gained much attention. 
Accordingly, common models, such as Seow’s 
(2008) and the cost-benefit model of information 
and communications technology interaction 
(Caldwell, 2008), do not take SRT variability 
into account. SRT variability stems from many 
situational influences on SRTs, such as network 
congestion, or the number and nature of concur-
rently running system operations in the back-
ground, such as automatic background saving, 
system updates, or virus scanners, which are 
prevalent in today’s multitasking enabled sys-
tems (Cota-Robles & Held, 1999; Flautner, 
Uhlig, Reinhardt, & Mudge, 2000; Yates, Kurose, 
Towsley, & Hluchyj, 1993).

Classic research on delays before a target 
stimulus generally showed faster user responses 
when the target always appears after a given 
delay than when it appears after two varying 
delays (see Niemi & Näätänen, 1981, for 
review). Generally, humans have been shown to 
be able to use temporal regularities (Correa, 
Lupiáñez, Milliken, & Tudela, 2004; Coull & 
Nobre, 1998; Haering & Kiesel, 2012; 
Kingstone, 1992; Thomaschke & Dreisbach, 
2013; Thomaschke, Kiesel, & Hoffmann, 2011; 
Thomaschke, Wagener, Kiesel, & Hoffmann, 
2011a, 2011b). That is, when one repeatedly 
experiences the same temporal structures, one 
adapts to these structures so that one orients 
attention to specific points in time and can thus 
respond more quickly when events occur at the 
expected time.

In human–computer interaction (HCI) 
research, some authors point out that temporal 
variability may impair user performance and 
increase users’ stress level. In this context, vari-
ability means unpredictability, and it leads to 
temporal uncertainty and stress (Hui & Tse, 
1996; Osuna, 1985). Accordingly, Kuhmann, 
Boucsein, Schaefer, and Alexander (1987) 
hypothesized that variable SRTs should 
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influence physiological stress measures and 
user performance. However, temporal variabil-
ity neither increased physiological stress mark-
ers nor performance measures. Another study 
used a continuous computer game–like task 
consisting of several steps that were either con-
tiguous or separated by variable SRTs. When 
SRTs were variable, URTs were increased and 
those blocks were enjoyed less (Szameitat, 
Rummel, Szameitat, & Sterr, 2009).

In sum, even if actual SRTs are commonly 
subjected to tremendous variability, far less 
research has been devoted to the impact of SRT 
variability on users than to the impact of length. 
Findings on the benefits of decreased variability 
cast doubt on the main focus on shortening 
SRTs to improve HCI. Users have been found to 
accept longer SRTs when they are predictable 
and accepted as reasonable (Caldwell & Wang, 
2009). Focusing on variability as a means to 
heighten predictability may be a fruitful 
approach.

There is, nevertheless, a technical trade-off 
between variability and mean SRT duration. 
Minimal SRT durations can be achieved when a 
system responds as fast as possible. However, 
computers are not always maximally respon-
sive, which is why minimally possible average 
SRTs come at the expense of variability. As 
shortening SRTs is beyond the scope of an inter-
action designer, reducing variability as a means 
to heighten predictability can be achieved only 
by artificially prolonging short SRTs on a given 
computer system so that they are the same 
length as longer SRTs. Doing so, however, natu-
rally results in a trade-off between lower vari-
ability on one hand and longer average SRTs on 
the other.

Aim of This Study

To the best of our knowledge, no research 
has been done to assess how the trade-off 
between variability and duration of SRTs influ-
ences user behavior and user experience. As 
humans build temporal expectations and, by 
doing so, exploit temporal structures, users 
should also be able to generate expectancies 
concerning the speed of a computer program 
and the time they usually have to wait after 
certain queries. In this article, we examine 

whether designing for low variability of SRTs 
at the cost of slower average SRTs is worth 
considering.

In the present study, we manipulated the 
temporal regularity of an e-mail client’s SRTs. 
Performance, subjective task load, and likeabil-
ity of interaction were compared for two SRT 
distributions. The first is an approximately con-
tinuous Poisson distribution, which is the distri-
bution predicted by queuing theory (Kleinrock, 
1975) and actually measured SRTs on modern 
computers best (Cota-Robles & Held, 1999; 
Flautner et al., 2000; Yates et al., 1993). For the 
second distribution, all SRTs from the first dis-
tribution were accumulated to two SRTs, a 
medium one and the longest one. We expected 
that a reduction of variability would decrease 
URTs and TETs, since participants should be 
able to implicitly adapt to the given temporal 
structures. With regard to likeability of the 
e-mail system, two outcomes are possible. A 
reduction of variability could either improve 
likeability or decrease likeability, as the low 
variability comes with a greater average SRT 
duration.

Method
Participants

A total of 22 participants (1st-year psychol-
ogy students or recruited from a participant 
database) took part for €12 or course credit. 
Exclusion criteria were either a failure rate 
above 15% or an average URT 2.5 standard 
deviations above the average of all other par-
ticipants. Because of these criteria, 2 of 22 
participants had to be excluded from data anal-
ysis. The average age of the remaining 20 par-
ticipants (13 female, 19 right-handed) was 
22.12 years (SD = 2.59).

Task

The participants’ task was to assume the posi-
tion of a management assistant, responsible for 
their manager’s e-mails. The task was accom-
plished with the right hand and a mouse. At the 
beginning of the trial, the e-mail client’s in-box 
displayed two e-mails (see Figure 1). Participants 
had to check whether the top e-mail was relevant 
or spam (veridically labeled in the rightmost 
column as spam or not spam) and to forward 
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relevant e-mails to their manager and delete 
spam. To initiate the chosen action, participants 
had to click the “Löschen” (delete) or 
“Weiterleiten” (forward) button. After clicking, 
participants had to wait until they could select 
the correct recipient or confirm deleting. An ani-

mated activity indicator indicated the SRT 
between the click and the target screen. After the 
SRT, a pop-up window for selecting the recipient 
(always the top name) appeared for the forward 
response. For the delete response, a pop-up 
asked the participants to confirm their selection. 

Figure 1. Schematic sketch of a trial. In the in-box, participants have to forward (click 
“Weiterleiten”) the top e-mail if it is not spam or delete (click “Löschen”) the e-mail if it 
is spam. After the system response time, the target appears. In e-mail trials, participants 
have to click their boss’s name (Dr. Ackermann), and in spam trials, they have to confirm 
deleting (click “Ja”). Spam trials are depicted only in detail pictures here (lower half).
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After the user response, a pop-up confirmed the 
sending or deletion for 600 ms before the next 
trial started.

Spam e-mails and relevant ones were distrib-
uted 20% and 80%. Spam trials were included 
to ensure that participants had to discriminate 
the e-mails in the in-box and would not just 
blindly click as soon as any stimulus appeared. 
To prevent participants from constantly clicking 
until target onset, more than two clicks before 
target onset triggered the error message “Input 
Fehler—zu viele Mausklicks. Bitte warten Sie, 
bis das System neu startet” (“Input error—too 
many mouse clicks. Please wait until the system 
reboots”) for 10 s.

Apparatus and Stimuli

The experimental setting was created with 
Adobe Photoshop (Adobe Systems, Mountain 
View, CA) for the visual design and E-Prime2 
(Schneider, Eschman, & Zuccolotto, 2002) for 
adding interactivity and collecting data. Data 
were collected on a Windows PC with 17-in. 
CRT display (screen resolution 1,024 × 768 
pixels). Participants’ responses were recorded 
with the use of a standard optical mouse.

SRTs were chosen with the assumption that 
SRTs follow a Poisson distribution (Kleinrock, 
1975). SRT range from 300 to 3,000 ms was 
chosen on the basis of the nature of this task. 
According to Seow (2008), this study’s task 
would be categorized as “immediate.” Therefore, 
time intervals of 0.5 to 1 s would be most 
appropriate, whereas SRTs of 2 to 5 s would 
still be perceived by the users as continuous. 
Additionally, user satisfaction has been found to 
be highest with SRTs between 2 and 4 s 
(Galletta, Henry, McCoy, & Polak, 2004; Nah, 
2004). In the high-variability condition (seven 
SRTs), which represented modern computing 
systems, SRTs followed approximately a con-
tinuous Poisson distribution with λ = 1/1,500 
ms. (The expression variability in this article 
refers to the number of different SRTs that are 
presented to the participant. It should not be 
confounded with the statistical term variance.) 
In this distribution, more than 75% of all trials 
still remain in the “tolerable” category of below 
2 s (Nah, 2004) and nearly 50% were even 
below 1 s.

For reasons of experimental practicability, 
the continuous distribution was divided into 
seven categories with 450-ms distance (Table 
1). The number of trials for each SRT was cho-
sen on the basis of the probability of the given 
SRT in the Poisson distribution. The SRTs in 
the low-variability (two SRTs) condition were 
chosen so that all other SRTs could be extended 
to one of them and the occurrence of both SRTs 
was evenly probable. In this condition, approx-
imately 50% of all trials were outside of this 
tolerable range. We thus compare user perfor-
mance in an on-average faster condition with 
more variability (seven SRTs) with perfor-
mance in a condition with only two on-average 
longer SRTs.

Questionnaires

A German translation of the NASA–Task Load 
Index (NASA-TLX) questionnaire (see Table 2; 
Hart & Staveland, 1988; Pfendler, 1990) to mea-
sure subjective task load and the AttrakDiff ques-
tionnaire to measure likeability (see Hassenzahl, 
Burmester, & Koller, 2003; Table 3) were admin-
istered after each session. No other questionnaires 
were administered.

Procedure

Participants attended two sessions on differ-
ent days within 1 week. Each session differed in 
the variability of SRTs. The order of the vari-
ability conditions was counterbalanced across 
participants.

Table 1: Number of Trials With Corresponding 
System Response Time (SRT) in Low-Variability 
and High-Variability Conditions

Number of Trials

SRT (ms) Low Variability High Variability

300 10
750 23 13
1,200   8
1,650   7
2,100   5
2,550   4
3,000 27   3
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In each session, participants completed a 
practice block of 20 trials, with a constant SRT 
of 500 ms, independent of the variability con-
dition. The practice block was followed by 13 
experimental blocks of 50 trials each. Trial 
sequence was randomized within blocks. After 
each block, a feedback screen informed par-
ticipants of their average speed and accuracy, 
encouraging them to work faster and more pre-
cisely. At the end of each session, participants 
completed the two questionnaires on their sub-
jective evaluation of the system.

Results
Preliminary Analysis

In learning experiments, experience with dif-
ferent procedures in the first session might 
affect performance differently in the second 
session (Greenwald, 1976). Such carryover 
effects would confound a within-subject analy-
sis, because they cannot be accounted for by 
counterbalancing. Thus we performed a carry-
over check prior to analysis.

In particular, we compared the average target 
URTs after SRTs appearing in both conditions 
(750 ms and 3,000 ms) in the learning blocks 
and the last three blocks. The order of sessions 
interacted with the variability condition, F(1, 
18) = 53.56, p < .001, η

p

2 = .748. Both groups 
became faster, that is, improved in the task, 
throughout Session 1 (ps ≤ .001). However, no 
group showed a significant effect of learning in 
terms of speeding up throughout Session 2, nei-
ther the group starting with high variability, t(9) 
= −0.82, p = .432 (15 ms faster on average), nor 
the group starting with low variability, t(9) = 
0.81, p = .438, who got even numerically slower 
(10 ms on average). This order effect indicates 
that both procedures differed in their effects in 
the consecutive session.

In that case, a reliable within-subject analy-
sis is not possible and it is recommended that 
the second session be dropped and only the first 
half be analyzed as between-subjects design 
(Cook & Campbell, 1979). To check whether a 
between-subjects analysis of the first session 

Table 2: NASA–Task Load Index Questionnaire Scale Definitions

Scale End Points Descriptions

Mental Demand Low–high How much mental and perceptual activity was required (e.g., 
thinking, deciding, calculating, remembering, looking, 
searching, etc.)? Was the task easy or demanding, simple or 
complex, exacting or forgiving?

Physical Demand Low–high How much physical activity was required (e.g., pushing, pulling, 
turning, controlling, activating, etc.)? Was the task easy 
or demanding, slow or brisk, slack or strenuous, restful or 
laborious?

Temporal Demand Low–high How much time pressure did you feel due to the rate or pace at 
which the tasks or task elements occurred? Was the pace slow 
and leisurely or rapid and frantic?

Performance Good–poor How successful do you think you were in accomplishing the 
goals of the task set by the experimenter (or yourself)? How 
satisfied were you with your performance in accomplishing 
these goals?

Effort Low–high How hard did you have to work (mentally and physically) to 
accomplish your level of performance?

Frustration Level Low–high How insecure, discouraged, irritated, stressed, and annoyed 
versus secure, gratified, content, relaxed, and complacent did 
you feel during the task?

Note. Adapted from Hart & Staveland (1988, p. 168).
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only would be appropriate or whether it would 
be confounded by a priori group differences, we 
compared URTs after SRTs appearing in both 
conditions and the average time users spent on 
the whole task in all SRT conditions (TET) for 
the first experimental block. Neither a mixed-
measures ANOVA for URT (Variability Group 
[low and high] × SRT [750 ms and 3,000 ms]), 
F(1, 18) = 0.75, p = .398, η

p

2 = .040, nor a 
between-subjects ANOVA for TET (Variability 
Group [low, high]), F(1, 18) = 1.343, p = .262, 
η

p

2 = .069, indicated initial differences between 
both groups. We have no reason to assume that 
participants differed prior to the experiment and 
thus conjecture that carryover effects occurred 
between experimental conditions.

So, due to the confounding order effect, 
requirements for a within-subject analysis were 
not met, but requirements for a between-sub-
jects analysis were. Thus, we report only data 
(URTs, TETs error, and questionnaire data) of 
the between-subjects analysis of Session 1. For 
all further analyses, the practice block and the 
first three experimental blocks were considered 
learning blocks and, therefore, not included into 
the analyses.

Target URTs

For the analysis of URTs, we analyzed only 
URTs in the two SRTs that appeared in both the 
high- and the low-variability conditions (750 ms 
and 3,000 ms). This criterion was necessary 
because the duration before a target’s appearance 
itself influences URT (Niemi & Näätänen, 1981), 
and therefore, URT differences across different 
SRTs could be caused by experimental manipula-
tion as well as by the length of the SRT itself. 
Only e-mail trials, a priori defined as relevant  

trials, were analyzed because of an insufficient 
number of spam trials, requiring another move-
ment for statistical analysis. We excluded statisti-
cal outliers greater than 3 standard deviations 
above or below each participant’s individual aver-
age in each condition (1.5%) from this analysis to 
reduce beta errors (Bush, Hess, & Wolford, 1993; 
Ratcliff, 1993). We also removed failure trials 
(3.6%). In total, 5.1% of all trials were removed.

A two-way, mixed-measures ANOVA, with the 
between-subjects factor variability (low, high) and 
the within-subject factor SRT (750 ms, 3,000 ms), 
showed that participants experiencing low vari-
ability responded significantly faster than did par-
ticipants experiencing high variability, F(1, 18) = 
13.32, p = .002, η

p

2 = .43 (see Figure 2 and Table 
4). No other main effects or interactions were sig-
nificant, all ps > .3.

Table 3: AttrakDiff Questionnaire Scales

Scale Description

Pragmatic Quality Perceived ability of a product to reach goals by providing useful 
and usable functions

Hedonic Quality–Stimulation Ability of a product to satisfy the need for improvement of one’s 
skills and knowledge

Hedonic Quality–Identity Ability of a product to communicate self-worth-improving 
messages to relevant others

Attractiveness Global positive–negative rating of a product

Figure 2. Target user response time with variability 
analyzed as between-subjects factor for system 
response times of 750 ms and 3,000 ms.
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Total Time on Task and TET

In this article, TET is defined according to 
Dannenbring (1983) as the measure for the 
human component in completing the whole 
task. Total time on task refers to the entire time 
that the man–computer system needs to process 
a task.

Although we analyzed URTs in a statistically 
“clean” way, we are aware that for a “real” 
application, stakeholders would be more inter-
ested in overall performance gains. Therefore, 
we included all trials in our analysis of TETs 
and total time on task to have a realistic mea-
sure of how long our participants spent on an 
average trial after the learning phase. To do so, 
we calculated the time spent on the task as the 
average time between onset and offset of each 
trial, including the initial response and the tar-
get response (see Figure 1) for the low-variabil-
ity and the high-variability condition. Both 
spam and relevant e-mail trials were included in 
this analysis as well as all different SRTs. Trials 
with total time on task higher or lower than 3 
standard deviations above or below each par-
ticipant’s individual average in each condition 
were eliminated from analysis (1.3%). Failure 
trials were included, as failure rate was intended 
to be part of the performance measure. Thus, 
two average times on task were obtained for 
each participant, corresponding to the two vari-
ability conditions.

Because total time on task includes, on aver-
age, higher SRTs in the low-variability condi-
tion, we also calculated TET (Dannenbring, 
1983) as a measure of participants’ average per-
formance. That is, we subtracted SRTs from the 
time on task to gain TET as the “human part” of 
interaction time.

A one-way between-subjects ANOVA on 
total time on task with the factor variability 
(low, high) revealed that the overall duration of 
a trial was longer in the low-variability condi-
tion than in the high-variability condition, F(1, 
18) = 35.37, p < .001, η

p

2 = .66 (see Figure 3 
and Table 4). An ANOVA with the between-
subjects factor variability (low, high) for TET 
revealed a significantly shortened TET for low 
variability, F(1, 18) = 12.40, p = .002, η

p

2 = .41.

Failure Rate

Spam and relevant trials were included in 
this measure. Wrong classification of relevant 
e-mails as spam and classification of spam 
e-mails as relevant were considered errors. 
Furthermore, trials with more than one click on 
the target screen were considered target click 
errors, because those trials indicated either a 
too-early response or a lack of visual attention 
to the screen. Classification and target click 
errors were averaged for each participant for 
750-ms and 3,000-ms SRTs. A two-way mixed-
measures ANOVA (Variability [low, high] × 

Table 4: Means for All Measures

Measure Low Variability High Variability

Mean URT with SRT = 750 (ms) 340 (77) 343 (64)
Mean URT with SRT = 3,000 (ms) 466 (88) 482 (101)
Total time on task (ms) 3,039 (139) 2,660 (146)
Task execution time (ms) 1,306 (144) 1,537 (150)
Failure rate with SRT = 750 ms (%) 5.40 (2.84) 5.53 (3.94)
Failure rate with SRT = 3,000 ms (%) 5.55 (3.00) 6.00 (11.12)
NASA–Task Load Index total score 9.27 (3.60) 8.99 (2.28)
AttrakDiff Pragmatic Quality 4.24 (0.50) 4.20 (0.53)
AttrakDiff Hedonic Quality–Stimulation 3.87 (0.69) 4.26 (0.52)
AttrakDiff Hedonic Quality–Identity 4.13 (0.33) 3.97 (0.33)
AttrakDiff Attractiveness 4.10 (0.27) 4.14 (0.37)

Note. Standard deviations shown in parentheses. URT = user response time; SRT = system response time.
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SRT [750 ms, 3,000 ms]) showed no difference 
in percentage of error, F(1, 18) for SRT < 2, all 
other Fs < 0.1 (see also Table 4).

NASA-TLX

NASA-TLX questionnaire data were ana-
lyzed according to the guidelines (Hart & 
Staveland, 1988). The quantitative ratings on 
each individual scale were multiplied with the 
weight, obtained from the pairwise compari-
sons. We calculated a full score by summing up 
the weighted scale scores and dividing the final 
score by the sum of its weights. A t test on over-
all task load on the NASA-TLX questionnaire 
showed no significant difference between the 
low- and the high-variability condition, t(18) = 
0.20, p = .842, d = 0.091 (see Table 4).

AttrakDiff

For each participant, we calculated scores on 
all four scales by averaging the score of the 
items belonging to each individual scale (see 
Table 4). The t tests on all individual scales of 
AttrakDiff revealed no significant difference on 
any of the four scales, all ps > .4. The mean 
overall for the scales was M = 4.16 (SD = 0.18).

Discussion
In accordance with our hypotheses, partici-

pants performed faster in a sequential task 
interrupted by SRTs when the variability of the 
SRTs was low, compared with when the vari-
ability was high. Although reduced variability 
of SRTs came at the expense of, on average, 
elongated waiting times, the overall reduction 
in TET reveals that the human response compo-
nent of the task is accelerated (as already pre-
dicted, but not found, by Kuhmann et al., 
1987). Although responses were faster in the 
low-variability condition, error rates do not dif-
fer between the conditions (and numerically 
point to the same direction as URTs). Therefore, 
increased response speed cannot be attributed 
to decreased accuracy.

User frustration or decreased user satisfac-
tion cannot account for URT differences, as nei-
ther subjective task load nor likeability differed 
between the conditions, although SRTs were on 
average 693 ms longer (with 54% SRTs > 2 s) in 
the low-variability condition than in the high-
variability condition (24% SRTs > 2 s). This 
finding challenges Fischer, Blommaert, and 
Midden’s (2005) finding of a linear negative 
relationship between total time on task and user 
satisfaction and contradicts Miller’s (1968; 
Nielsen, 1999; Shneiderman & Plaisant, 2009) 
widely spread SRT boundary of 2 s to maximize 
user satisfaction and user performance.

The general suggestion to minimize SRTs to 
obtain maximal user performance and satisfac-
tion has already been criticized because of the 
risk of more errors after very short SRTs 
(Shneiderman & Plaisant, 2009). We conclude 
that the relationship between time to task com-
pletion and performance, as well as user satis-
faction, cannot always be a linear one. Instead, 
the results of the present study suggest that both 
factors might be moderated by variability and, 
thus, temporal predictability. In light of this 
possibility, focusing on variability in interface 
design might be a promising approach.

However, the null effects have to be inter-
preted carefully, as we did not have sufficient 
statistical power to rule out potential effects. 
Authors of further studies should attempt to use 

Figure 3. Task execution time with variability 
analyzed as between-subjects factor. Task execution 
time averaged across system response times, spam 
and relevant e-mail trials. Error bars indicate 
standard deviation.
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more sensitive measures of user satisfaction and 
include physiological measures.

We assume temporal expectancy to be the 
cognitive mechanism underlying the effect. 
Humans build up expectations as to when the 
next event will happen (Awramoff, 1903; 
Wundt, 1874). Previous experience shapes 
these expectancies. When the intervals are more 
or less constant, one can anticipate the time of 
target occurrence (Cardoso-Leite, Mamassian, 
& Gorea, 2009; Los & Schut, 2008) and, hence, 
respond relatively quickly and accurately. 
However, when intervals are variable, exact 
anticipation of the next event is much less pre-
cise, and response quality suffers (Elithorn & 
Lawrence, 1955). Thus, we successfully dem-
onstrated that implicit adaptations to temporal 
structures (Olson & Chun, 2001; Wagener & 
Hoffmann, 2010) can be used to decrease URTs 
and TETs in HCI.

We had unexpectedly strong carryover 
effects. Participants from both groups did not 
learn in the second session. We speculate that 
participants overlearned either the predictabil-
ity or unpredictability (depending on the start-
ing condition) of the system in the first session, 
suggesting that temporal expectations are 
formed quickly and then held even if they no 
longer apply. Alternatively, a lack of motivation 
“to do the same boring task again,” uttered by 
some participants at the beginning of the second 
session, might indicate that it was a lack of par-
ticipants’ compliance. Although groups did not 
differ in the first block of the experiment, we 
cannot rule out that different user strategies 
existed prior to the experiment that contributed 
to this effect. Further research should address 
the importance of constancy of temporal 
patterns.

To our knowledge, this study revealed behav-
ioral benefits for temporally predictable user 
interfaces for the first time. Further research 
should replicate and generalize these findings. 
Several factors could influence how temporal 
expectancies determine user performance and 
user satisfaction. First, with different character-
istics of the task, such as greater complexity or 
a lower average SRT duration, participants 
might be able to fully compensate the time loss 
caused by elongated SRTs in the low-variability 

condition. Second, we assume that different 
interaction devices and interaction types,  
for instance, workplace applications versus  
network-dependent Internet applications, might 
benefit differently from SRT regularities. For 
touch screen devices, temporal predictability 
might help to lower the particularly high error 
rates (Brewster, Chohan, & Brown, 2007; 
Hoggan, Brewster, & Johnston, 2008). For 
mobile devices, temporal expectancies could 
foster interaction as users shift their attention 
away from the screen, and therefore the task, 
with SRTs between 4 and 8 s (Roto & Oulasvirta, 
2005). Knowing when a process will be fin-
ished might, therefore, improve the users’ atten-
dance to the task.

Last, we suggest that the role of temporal 
predictability for different types of users in dif-
ferent situations be investigated (for an over-
view, see Caldwell, 2008). For example, 
temporal predictability might help novice users 
more than experts to understand that the system 
is actually responding. Therefore, the knowl-
edge of when a response of the system is to be 
expected could be part of the user’s expertise 
regarding the system and explain why experi-
enced users accept longer SRTs (Caldwell & 
Paradkar, 1995). Additionally, the detrimental 
influence of situational factors, such as time 
pressure (Caldwell & Garett, 2005) or task load, 
on performance could be alleviated by temporal 
predictability, as the automatic allocation of 
attention to a task at its expected time could 
leave more resources for the actual task.

To conclude, we conjecture that reducing 
variability provides, because of the ability to 
adapt to temporal structures, a possibility of time 
design beyond minimizing SRTs. Computing 
systems could be deliberately slowed down to 
enhance temporal predictability. The present 
effect, however, has to be examined further to 
deduce general recommendations for interface 
design. The range of the SRTs’ time scale, its 
parameters, and its impacts on HCI should con-
sequently be topics of further research.

Key Points

•• Responsiveness in terms of average system 
response times is a common measure for quantify-
ing software quality, as it affects user experience.
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•• This article shows that computer users adapt to 
temporal structures in computing systems.

•• Temporal predictability enhances user perfor-
mance, even when it comes at the cost of longer 
absolute waiting times.

•• Temporal predictability should be considered 
when dealing with responsiveness.
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