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Abstract Impairments in cognitive control generating
deviant adaptive cognition have been proposed to account

for the strong preference for repetitive behavior in autism.

We examined if this preference reflects intentional deficits
rather than problems in task execution in the broader aut-

ism phenotype using the Autism-Spectrum Quotient (AQ).

Participants chose between two tasks differing in their
relative strength by indicating first their voluntary task

choice and then responding to the subsequently presented

stimulus. We observed a stronger repetition bias for the
harder task in high AQ participants, with no other differ-

ences between the two groups. These findings indicate that

the interference between competing tasks significantly
contributes to repetitive behavior in autism by modulating

the formation of task intentions when choosing tasks

voluntarily.
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Introduction

Human goal-directed behavior relies on neurocognitive

control processes that allow for sustaining focus on tasks
without being distracted, and for adapting to dynamically

changing environmental conditions of daily life by shifting

focus when necessary. This adaptive human cognition has
often been studied in the lab using experiments in which

participants rapidly switch between different tasks. From

these studies we know that, although the ability to exert
intentional control is not self evident as shown in different

patient studies (e.g., Aron et al. 2004), the way it is

expressed in behavior of typically developing individuals
depends on a complex interaction between current inten-

tions and past experiences (see e.g., Kiesel et al. 2010;

Koch et al. 2010; Vandierendonck et al. 2010 for a review
on behavioral findings; and Sakai 2008 for a review on

findings from neuroimaging studies). Interestingly, while

intentional control certainly provides the basis for cogni-
tive flexibility, recent studies on task switching have

reported empirical evidence for a consistent preference for
repetitive voluntary behavior in healthy population. Spe-

cifically, when given an option to voluntarily choose which

task to perform in each trial, while being encouraged to
choose tasks at random and equally often, participants

show a tendency to repeat tasks more often than to switch

between them (e.g., Arrington and Logan 2004; Mayr and
Bell 2006). Our study investigated how this repetition bias

is expressed in healthy individuals with more autistic traits

when given voluntary choice of tasks.
Repetitive behavior has been recognized as one of the

key symptoms of autism spectrum disorders (ASD).

Broadly speaking, this neurodevelopmental disorder is
characterized by impaired social interaction and commu-

nication, and by restricted and repetitive behavior
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(APA 1994). Preference for repetitive behavior in indi-

viduals with autism has been reported both in everyday
settings and clinical observations (e.g., extreme resistance

to change of any kind) as well as in experimental settings

(e.g., preservative responses on neuropsychological mea-
sures). Empirical evidence is mainly provided by various

studies using a neuropsychological test—the Wisconsin

Card Sorting Test (WCST)—in which the participant is
required to sort different cards on the basis of three pos-

sible dimensions of the geometric figures depicted on the
presented cards. The currently relevant sorting dimension

is never explicitly given to the participant, and changes

according to a fixed number of trials. The participant
therefore needs to infer the sorting rule based on feedback

provided by the experimenter and to decide whether to

keep on applying the same rule or to change it. Perfor-
mance on this test is measured in terms of errors, focusing

in particular on perseverative errors that indicate trials in

which participants maintain applying the previously rele-
vant sorting rule, although the (error) feedback provided

indicates that the rule has changed.

Many studies have shown that, relative to normally
developing individuals and those with other neurodevelop-

mental disorders, individuals with autism exhibit highly

perseverative responses in the WCST (see Hill 2004a, for a
review). Based on these findings, it has been suggested that

individuals with autism are cognitively inflexible, or more

precisely, exhibit problemswith switching between different
thoughts or actions when required (Hill 2004b). Intriguingly,

however, when tested in a more controlled experimental

settings, this idea of deficits in cognitive flexibility as mea-
sured by deviant task switching performance is hardly sup-

ported by any empirical evidence (see Geurts et al. 2009 for a

recent debate on this topic). For instance, Poljac et al. (2010)
used task cues to unambiguously specify the required task in

their study and reported that adolescents with autism swit-

ched between tasks in a similar way to their typically
developing controls but significantly better than their clinical

controls. This finding strongly implies that the deviations in

behavior of individualswith autism as detected by theWCST
cannot be accounted for in terms of an impaired ability to

switch tasks, leaving an important issue to be addressed

regarding the specific nature of the impaired mechanism
reflected in behavior as a tendency to perseverate.

Considering that individuals with autism find it difficult to

generate novel ideas and behaviors spontaneously (e.g.,
Boucher 1988; Craig and Baron-Cohen 1999; Turner 1999),

it is not surprising then that putting demands on their inten-

tional decisionmaking in situations of undefined tasks—such
as in the WCST—generates behavioral differences when

compared with typically developing individuals. Following

the same logic, reducing referential ambiguity in tasks
(Preissler and Carey 2005) and directing of the intentions

externally (Poljac et al. 2010) unsurprisingly facilitates their

task performance such that it successfully eliminates behav-
ioral differences. Accordingly, repeating tasks that are no

longer appropriate might occur when the choice of the pos-

sible alternatives is not explicitly specified, leaving room for
other factors to determine the task choice. For instance, recent

studies on task switching using a voluntary procedure—in

which participants are free to choosewhich task to performon
each trial—show that participants’ tendency to repeat tasks

more often increases when the stimulus repeats (Arrington
and Logan 2005; Mayr and Bell 2006; Yeung 2010). This

finding suggests that bottom-up stimulus processing interacts

with global intentional control as measured by task choice.
The present study therefore aimed to investigate whether the

observed tendency to exhibit repetitive behavior in autism

could be explained in terms of bottom-up effects modulating
the formation of global intentions when the tasks are unam-

biguously specified but the choice of which task to execute in

a trial is voluntary.
To this aim, a double registration voluntary procedure

was used in which participants make two responses on each

trial: the first to register that they have made a choice of
task by pressing a spacebar, the second to respond to the

subsequently presented stimulus (see Millington et al.

2012, Experiment 2). Separating task choice from the
actual task execution allows us to disentangle the partici-

pants’ global task intentions from their specific actions.

Different studies have provided evidence that these two
consider related yet dissociable processes (Arrington and

Yates 2009; Butler et al. 2011; Mayr and Bell 2006; Yeung

2010). This distinction is important as it allows us to
address the specific question of whether repetitive behavior

in autism reflects intentional deficits rather than problems

with implementing the task rule (action) once a task choice
has been made (intention).

Of primary interest was to specifically investigate whe-

ther between-task interference would significantly contrib-
ute to the observed tendency to exhibit repetitive behavior in

autism. A commonway to elicit clear effects of between-task

interference in task switching performance is by requiring
participants to switch between tasks that differ in their rel-

ative strength. Under these conditions, the performance costs

of task switching—as observed in slower response times
(RTs) and higher error rates—shows an asymmetry: the

switch costs seem to be greater for the easier task. This ini-

tially surprising, but now often replicated pattern of task
switching performance in both instructed (e.g., Allport et al.

1994) and voluntary (e.g., Liefooghe et al. 2010; Yeung

2010) procedures clearly indicate a role of between-task
interference in task execution. Interestingly, between-task

interference has also been reported to affect participants’

choice of tasks. Specifically, the repetition bias seems to be
stronger toward performing the more difficult task of a pair

J Autism Dev Disord

123



more often than the easier task (Liefooghe et al. 2010;

Millington et al. 2012; Yeung 2010), implying a clear
influence of between-task interference in the formation of

task intentions. To induce between-task interference in our

study we required the participants to voluntarily switch
between a relatively easy location task and a relatively hard

shape classification task.

Our participants were healthy individuals with either a
low or a high number of autistic traits as measured by a

self-report questionnaire that quantifies the extent of
autistic traits in healthy population—the Autism-spectrum

Quotient (AQ). The AQ has been used extensively to

investigate the broader ASD phenotype with converging
evidence that autism is not just a spectrum within the

clinical population, but that autistic traits are continuously

distributed through the general population (e.g., Baron-
Cohen et al. 2001; Hoekstra et al. 2007). Many studies have

shown that a higher position on the autism-like trait con-

tinuum of the AQ predicts cognitive processing similar to
but often milder than that found in ASD (e.g., Bayliss et al.

2005; Fugard et al. 2011; Poljac et al. 2012; Ridley et al.

2011; Stewart et al. 2009; von dem Hagen et al. 2011). The
AQ seems therefore to be sensitive to, and a useful tool for

assessing, the broader ASD phenotype in non-clinical

population (e.g., Bishop et al. 2004; Wheelwright et al.
2010).

In sum, this study was developed to test whether the

tendency of individuals with autism to engage in repetitive
behavior would also be detected in its broader phenotype

assessed with the AQ, with the main focus on the question

whether this repetitive behavior reflects intentional deficits
rather than problems in task execution. We specifically

tested the contribution of between-task interference to

repetitive behavior in individuals with high level of autistic
traits. We expected to find a stronger repetition bias in

individuals with more autistic traits if the repetitive

behavior in autism is mainly driven by between-task
interference (captured in behavior as an asymmetry in

registered measures) modulating the formation of task

intentions (task choice). We furthermore expected to find
no such difference in task performance (as measured in

terms of switch costs) if the repetition behavior is not

primarily driven by processes involved in eventual task
execution (RTs and errors) even in a setting that requires

flexible switching between tasks (cf. Poljac et al. 2010).

Method

Participants

Five hundred participants from the undergraduate psy-
chology program at the University of Leuven took part in a

pre-selection phase by completing the Autism-spectrum

Quotient (AQ) questionnaire. The students participated
voluntarily, for course credit and they all gave their written

informed consent prior to the inclusion into the study. The

protocol of the study was approved by the Ethics Com-
mittee of the Faculty of Psychology, University of Leuven,

and was carried out in accordance with the ethical stan-

dards laid down in the 1964 Declaration of Helsinki.

Autism-Spectrum Quotient (AQ)

The AQ is developed to estimate the presence and extent of

autistic traits in healthy individuals, with scores ranging
between 0 (low autistic traits) and 50 (high autistic traits).

This questionnaire consists of 50 statements, for each of

which four forced choices are offered to indicate whether
participants ‘definitely agree’, ‘slightly agree’, ‘slightly

disagree’, or ‘definitely disagree’ with each statement. The

original administration of the test (Baron-Cohen et al.
2001) showed that 80 % of people with either Asperger

syndrome (AS) or high-functioning autism (HFA) had a

score between 32 and 50, whereas in a control group, only
2 % of people scored within that range. Based on this

finding, the authors suggested the AQ as a valuable

instrument for rapidly quantifying where any given indi-
vidual is situated on the continuum from autism to nor-

mality. In this study, a Dutch version (translation by Ponnet

et al. 2001) of the AQ (Baron-Cohen et al. 2001) was
employed to quantify the amount of autistic traits in our

participants. This AQ scale is highly comparable to the

Dutch AQ scale validated by Hoekstra et al. (2008), and
has already been successfully used by for instance Wouters

and Spek (2011) who showed that this version had very

high internal consistency in their typically developing
participants (standarized Crohnbach’s alpha = 0.92).

Stimuli and Tasks

Participants were presented with a shape (triangle, square,

or circle) in one of three adjacent squares in a stimulus grid
on each trial. At a viewing distance of approximately

60 cm, the stimulus grid was 2.6" high and 7.4" wide, and
the presented shape approximately filled one square within
the grid. The grid remained on the screen throughout the

experimental block. Participants were required to volun-

tarily choose to respond either to the location or to the
shape of each presented stimulus. Responding to the

location involved deciding whether the stimulus appeared

in left, center, or right location of the grid using a spatially
compatible keypress. Responding to the shape included

categorizing the shape identity with an arbitrarily mapped

keypress. Stimulus shape and location varied randomly
from trial to trial.
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While making the task choice voluntarily, the partici-

pants were also encouraged to choose the two tasks at
random and equally often. They were instructed to make

their choice prior to stimulus presentation, and were

reminded to do so by a cue consisting of the words
‘LOCATION/SHAPE’ appearing one above the other with

large question marks on either side. Specifically, partici-

pants indicated that they had made a task choice (regardless
of what that choice was) by pressing the spacebar. They

then responded to the imperative stimulus using the hand
appropriate for the chosen task. Half of the participants

responded with their left hand for the shape task and their

right hand for the location task. For the other half of the
participants this mapping was reversed. Response keys

were left/circle mapped to the leftmost finger of the

responding hand, center/square mapped to the middle fin-
ger, and right/triangle to the rightmost finger.

Procedure

Participants first completed the AQ questionnaire, and their

individual AQ scores were used as a selection criterion for
inclusion into the main experiment of voluntary task

choice. The cutoffs were derived from the 5 % highest (AQ

score[ 24) and 5 % lowest scores (AQ score\ 8) and
only those who scored above or below these cut-offs were

included in the main task (cf. Stewart et al. 2009).

Accordingly, 25 students were assigned to each group, of
whom 39 agreed to take part in the voluntary task-choice

experiment. Specifically, 21 participants (14 female) with a

score well above the average AQ (all scores above 24,
mean score 28.5 ± 4.2) and 18 participants (13 female)

who scored significantly below the average (all scores

below 8, mean score 6.5 ± 0.8). Data of two participants
(one from each group) were excluded from further analy-

ses. One made 33 % errors on average, and the other failed

to follow the given instructions.
The selected participants started the main experiment

with three practice blocks of 50 trials, practicing first each

task separately and then switching between the two tasks.
In each trial, the participants chose which task to perform

according to instructions taken from prior voluntary choice

studies (Arrington and Logan 2004, 2005; Yeung 2010).
Specifically, they were instructed to perform each task on

about half the trials, and to try to perform the tasks in a

random order, ‘‘as if flipping a coin that said ‘shape’ on one
side and ‘location’ on the other’’. They were furthermore

explicitly instructed to make their choice before actually

pressing the space bar.
Following practice, participants completed 6 blocks

with voluntary choice procedure of 60 trials each. A trial

started with the cue that appeared above the stimulus grid
and remained there until the participant pressed the space

bar indicating that they had decided which task to perform

next. The imperative stimulus then appeared 300 ms later
and remained on the screen until the response was given,

followed by an interval of 500 ms showing the stimulus

grid only. Both the choice of task and the actual response
were not limited in time. At the end of each block, par-

ticipants were given feedback showing their average

response time (RT) and error rate as well as their task
choices and the number of task switches and repetitions

they made.

Data Analysis

We analyzed the data focusing on two measures of task

execution (RTs and error rates) and, critically, on two

measures of task choice (participants’ actual choices and
the speed with which they indicated these choices). All the

measures were analyzed separately using repeated mea-

sures analyses of variance (ANOVAs), with task (location/
shape) and transition type (switch/repeat) as within-subject

factors, and AQ group (low/high) as between-subject fac-

tor. For the purpose of these analyses, each trial was first
categorized according to task and transition type. Specifi-

cally, the task on a given trial was specified by the hand

that the participant used to respond, and the transition type
was determined according to the relation between the task

performed on the current and the previous trial. A trial was

coded as an error if the participant responded with the
wrong finger of the used hand. Finally, analyses excluded

the first trial of each block, and, for RT analyses, error

trials and trials following errors.

Results

To establish that the tasks differed in their relative diffi-

culty as intended, and that patterns of switch costs would
replicate the asymmetry previously reported in studies

using the voluntary switching procedure, we first present

data analysis of overall task execution. To furthermore
establish that our participants used the cue period to make

deliberative task choices, we then present analysis of

choice speed before presenting the critical analyses of data
of interest—participants’ task choices.

Task Execution

Participants were on average both faster, F (1, 35) =

38.38; p\ 0.01, and more accurate, F (1, 35) = 19.03;
p\ 0.01, when responding to the location of the stimulus

(618 ms and 2.8 % errors) than when responding to its

shape (752 ms and 5.8 % errors). This finding indicated the
Location task as the relatively easier of the two, confirming
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the expected differences in task difficulty. The established

task difficulty effect was similar in both AQ groups, F\ 1
(see Table 1).

Furthermore, task execution on switch trials (766 ms

and 5.1 % errors) was both slower, F (1, 35) = 33.95;
p\ 0.01, and more error-prone, F (1, 35) = 5.76;

p = 0.02, than task execution on repeat trials (605 ms and

3.5 % errors), indicating clear switch costs in both RTs and
errors, neither of which differed between the two AQ

groups, Fs\ 1. Of interest here was to establish whether
differences in task difficulty modulated task switching

performance. The existence of this switch cost asymmetry

was uncertain considering that the participants had unlim-
ited time to make and indicate their task choices in our

voluntary procedure. As shown in Fig. 1a, we indeed

observed the asymmetry in the RT data, with a significant
interaction between task and transition type, F (1,35) =

9.04; p\ 0.01, indicating greater costs when switching to

the easier location task than when switching to the harder
shape task. No interaction was observed in the error data,

F\ 1. Importantly, the switch cost asymmetry was similar

in both AQ groups, with the interaction between task,
transition type, and AQ group not being significant either in

RTs or in errors, Fs (1,35)\ 2.25; ps[ 0.14 (see Table 1).

Choice Speed

By analyzing the choice speed data, we aimed to assess
whether the participants actively used the cue period to

prepare themselves and to make deliberative task choices

before hitting the space bar. Figure 1b shows how average
choice speed was distributed across experimental condi-

tions. Our data suggest that the participants indeed actively

used the cue period, taking significantly more time to
prepare for a task switch (460 ms) than a task repetition

(333 ms), F (1,35) = 4.28; p\ 0.05. As Fig. 1b illustrates,

we furthermore observed a marginal interaction between
task and transition type, F (1,35) = 3.74; p\ 0.06, with

the participants taking the most time to prepare the switch

Table 1 Mean response time
(ms), error rate (%), and choice
time (ms) for low and high AQ
participants as a function of task
and transition type

None of the effects significantly
differed between the two groups

Low AQ participants (n = 21) High AQ participants (n = 18)

Response time Error rate Choice time Response time Error rate Choice time

Location

Switch 800 4.6 418 652 3.1 455

Repeat 532 1.7 356 488 1.9 320

Switch cost 268 2.9 62 164 1.2 135

Shape

Switch 844 5.6 455 764 7.1 512

Repeat 744 5.0 315 656 5.6 343

Switch cost 100 0.6 140 108 1.5 169

A

B

Fig. 1 Task execution data and choice speed. Panel A depicts mean
response times and error rates for the location and the shape task as a
function of transition type (switch or repeat). Panel B depicts the
mean time participants took before pressing the space bar as an
indication that they have chosen the task to perform next. Error bars
indicate SE of the mean
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toward the shape task. Both the main effect of transition

type and its interaction with task showed similar patterns in
both AQ groups, Fs\ 1 (see Table 1).

Task Choice

Analyzing the task choice data was of main interest in the

present study, as it permitted testing the idea that the
individuals with more autistic traits would show a stronger

repetition bias, since repetitive behavior is considered to be
one of the core characteristics of autism. We were therefore

interested to see if the asymmetry in repetition bias, as

previously observed in voluntary procedures using tasks
that differ in their relative difficulty (e.g., Millington et al.

2012; Yeung 2010), would be stronger in our participants

with high AQ scores. Consistent with this idea, we first
replicated the general repetition bias, with participants

choosing to repeat tasks more often (74 % of all trials)

than choosing to switch tasks (26 % of all trials),
F (1,35) = 53.31; p\ 0.01. Furthermore, we replicated the

asymmetry in repetition bias, with participants choosing to

repeat the difficult shape task more often (40 % of all trials)
than the easier location task (35 % of all trials), F (1,35) =

31.39, p\ 0.01. Critically, however, a significant interac-

tion between task, transition type, and AQ group was
observed, F (1,35) = 4.70, p\ 0.05. This finding indicates

that although the asymmetry in repetition bias was present

in both groups, with F (1,16) = 9.91, p\ 0.01 and
F(1,19) = 23.84, p\ 0.01, for low and high AQ group

respectively, the repetition bias towards the harder shape

task was more strongly apparent for the participants having
more autistic traits, as depicted in Fig. 2.

To further investigate our observation of a stronger

asymmetry in repetition bias for high AQ participants, we
analyzed an additional measure of repetitive behavior—the

length of runs of trials participants make when given the

voluntary choice of two tasks. Our replication of repetition

bias implied already that our participants exhibited biases

away from randomness although instructed to produce
equal numbers of trials of each task and equal numbers of

switch and repeat trials. Of particular interest here was to

test whether the significantly stronger preference for
repeating the harder shape task in high AQ participants as

observed in percentages of task choices would also be

observed as a tendency to produce longer runs for this task.
The measure of run length is possibly the only way for a

task preference to be expressed in voluntary procedures
using two tasks, since the overall numbers of switches and

runs when there are only two tasks must necessarily be

roughly equivalent (Yeung 2010).
For the purpose of this analysis, we first categorized

each trial by its position in the task run. We then calculated

the logarithm of the average run of the two tasks for each
participant. The logarithmic transformation was applied to

correct for the differences in variance due to the skewed

distribution of the run length. The analysis confirmed the
general asymmetry in repetition bias also in this measure,

F (1,35) = 29.77, p\ 0.01, with participants making

longer runs for the harder shape task (7.2 trials) than the
easier location task (6.3 trials). Crucially, however, a

significant interaction between task and AQ group,

F (1,35) = 4.27, p\ 0.05, confirmed that this tendency to
produce longer runs in the harder task was significantly

stronger in the participants with high AQ. Specifically,

although the participants with low AQ also demonstrated
the asymmetry in run length, F (1,16) = 11.23, p\ 0.01,

with the difference between the shape and the location task

being 0.7 trials, the participants with high AQ showed a
significantly stronger tendency to produce longer runs of

trials in the harder task, with the difference being 1.1 trials

in this group, F (1,19) = 21.33, p\ 0.01.
Repetitive behavior seems to be a complex construct

reflected in behavior of individuals with autism across

multiple distinct facets (e.g., Lam et al. 2008; Langen et al.
2011). Interestingly, a subset of items (10 out of 50)

included in the AQ is related to restrictive and repetitive

behaviors—Attention switching domain, as described in
Hoekstra et al. (2008). We therefore used these scores to

test their possible contribution to repetitive behaviors as

measured in our voluntary procedure. We first counted the
scores that each of our participants had on the items

belonging to the Attention switching domain, measuring

repetitive behavior. We then calculated the relative con-
tribution of these items to the total AQ score as a difference

between this actual score and their expected contribution to

the total AQ score (i.e., expected was 20 % of the total
score). The relative contribution of repetitive behavior as

measured by the AQ was significantly higher than 0 in both

high AQ, with average relative contribution of 1.13,
t(19) = 3.12, p = 0.006, and in low AQ participants, with

Fig. 2 Percentage of task choice for the location and the shape task
as a function of transition type (switch or repeat) in the low and high
AQ participants. Error bars indicate SE of the mean
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average relative contribution of 0.92, t(16) = 3.07,

p = 0.007. Moreover, the average contribution of repeti-
tive behavior did not significantly differ between the

groups, t(35) = -0.44, p = 0.66. Interestingly, when

taken as a covariate, the items measuring repetitive
behavior did not modulate the general tendency to choose

the harder task more often or to make longer runs for this

task, Fs\ 1. Analyzing each of the AQ groups separately
confirmed the general observation: the repetitive behavior

ratio did not significantly influence task choice or run
length in high AQ participants, Fs\ 1, nor in low AQ

participants, F (1,15) = 1.01, p = 0.33 and F\ 1,

respectively.
Collectively, our task choice data demonstrated a sig-

nificantly stronger asymmetry in repetition bias for the

participants with more autistic traits in both of its mea-
sures—percentages of task choice and run length. The two

measures are highly correlated in general (r = 0.91;

p\ 0.001), and when tested in both of the tasks separately
(r = 0.90; p\ 0.001; and r = 0.88; p\ 0.001; for the

location and the shape task, respectively). Task choice and

run length were not significantly modulated by the items
within the AQ scale related to restrictive and repetitive

behaviors. The final analysis we performed on the task

choice data aimed to further investigate the processes
contributing to the observed asymmetry in repetition bias.

Previous studies have already shown that repeating tasks is

in general facilitated by stimulus repetition (Mayr and Bell
2006; Yeung 2010), suggesting that bottom-up stimulus

processing affects people’s intentions and contributes to

the repetition bias observed in voluntary procedures.
Although our participants were instructed to make their

choice during the cue period and to indicate to have made

the choice by pressing the space bar, which then initiated
the stimulus presentation, it is still possible that their final

task choices were affected by the subsequent stimulus

processing such that they disregarded their initial inten-
tions. Just recently, Millington et al. (2012, Experiment 2)

used a similar space-bar voluntary procedure and observed

a tendency in their participants to occasionally ignore the
initial intention and repeat the shape task more often when

the shape of the stimulus repeated. We therefore aimed to

test if our observation of the stronger asymmetry in repe-

tition bias in people with more autistic traits was possibly
generated or in some way affected by bottom-up stimulus

processing. Table 2 shows how the proportion of task

repetitions were distributed over different types of stimulus
repetitions (shape, location, both, or neither repeated) for

both low and high AQ participants. We only observed a

marginal interaction between AQ group and repetition of
stimulus shape, F (1,35) = 3.41, p = 0.07, with the pro-

portion of task repetitions not being significantly different
when stimulus shape repeated (0.80) from when it changed

(0.79) in participants with high AQ, F (1,19) = 2.41,

p = 0.14, whereas the participants with low AQ repeated
tasks more when the stimulus shape repeated (0.76) than

when it changed (0.71), F (1,16) = 7.41, p\ 0.05. This

finding indicates that the stronger asymmetry in repetition
bias towards the harder shape task observed in high AQ

participants did not simply arise from stimulus repetition.

Furthermore, repetition of stimulus location only generally
increased the proportion of task repetitions, F (1,35) =

7.02, p\ 0.05, from 0.75 to 0.78, showing no interaction

with AQ group, F\ 1.

Discussion

The primary aim of this study was to investigate the

mechanism behind the tendency to exhibit repetitive
behavior reported in autism. To this end, we compared

behavioral patterns in voluntary task choice in healthy

individuals varying in their level of autistic traits as mea-
sured by the AQ. The findings demonstrate a significantly

stronger tendency to specifically repeat the harder task

more often for the participants with high level of autistic
traits. Consistent with other studies showing that the AQ

predicts various cognitive abilities similar to that found in

ASD (e.g., Fugard et al. 2011), these results confirm that a
comparable bias toward repetitive behavior—one of the

main symptoms of ASD—can also be detected when

measuring voluntary task choices in the broader autism
phenotype as assessed by the AQ.

Table 2 Proportion of task
repetitions as a function of
whether the stimulus location
and stimulus shape repeated
from the previous trial

Location changes Location repeats

Shape changes Shape repeats Shape changes Shape repeats

Low AQ participants

Just performed location 0.70 0.75 0.71 0.76

Just performed shape 0.71 0.73 0.72 0.80

High AQ participants

Just performed location 0.74 0.77 0.80 0.81

Just performed shape 0.78 0.79 0.82 0.83
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Critically, these findings suggest that the repetition bias

in autism arises from processes involved in the formation
of general task intentions rather than from those involved

in task execution: While the patterns of task choice—both

the proportion of task choices as well as the run length—
showed a stronger bias toward repeating the harder task in

participants with more autistic traits, no differences in

behavior during actual task execution were found between
high and low AQ participants. Consistent with previously

reported patterns of task switching performance in autism
(e.g., Poljac et al. 2010; Schmitz et al. 2006; Shafritz et al.

2008; Stahl and Pry 2002; Whitehouse et al. 2006), the two

AQ groups showed no differences in switch-specific per-
formance. Specifically, both groups replicated earlier

results from studies using voluntary procedure in a similar

way by showing a reliable switch cost (e.g., Arrington and
Logan 2004) as well as a reliable asymmetry in switch cost

(e.g., Yeung 2010). Since the behavioral patterns of the two

AQ groups were overall similar, showing no differences in
any of the measures other than participants’ task choice, it

seems highly unlikely that the stronger asymmetry in rep-

etition bias observed in high AQ group developed from
some kind of a general impairment in their task perfor-

mance. In fact, high AQ participants were in general

numerically faster in task execution (640 vs. 730 ms for
high and low AQ, respectively), showed numerically

smaller switch costs (136 vs. 183 ms) as well as a

numerically smaller switch cost asymmetry (56 vs.
168 ms). These patterns strongly suggest that the specific

differences observed in repetition bias are not simply

generated by some general discrepancy in task perfor-
mance between the two groups.

The observed asymmetry in participants’ switch costs

and task choices replicated previous findings in studies
using voluntary task switching procedures (e.g., Millington

et al. 2012; Yeung 2010). These findings clearly indicate

the existence of interference in our study. As expected, this
interference between the two competing tasks affected the

processes involved in task execution (switch cost asym-

metry) and in task intentions (task repetition asymmetry).
Importantly, however, the observation of a significantly

stronger asymmetry in task repetitions in participants with

more autistic traits suggests that the strong preference for
repetitive behavior in autism is most probably generated by

interference between the competing tasks modulating the

formation of task intentions. Just recently, Poljac and
Yeung (2012) provided neural evidence for the involve-

ment of between-task interference in intentional task

preparation when tasks are chosen voluntarily, confirming
these and other behavioral data (e.g., Arrington and Logan

2005; Mayr and Bell 2006; Millington et al. 2012; Orr and

Weissman 2011; Yeung 2010). Poljac and Yeung’s data
suggest that between-task interference modulates global

task intentions rather than either motor-related preparation

or the actual task execution. It thus seems that between-
task interference in our study affects the formation of

intentions for voluntary actions in people with high level of

autistic traits more than it does in those with less autistic
traits.

This remarkable tendency to repeat the harder task of a

pair has been suggested to reflect differences in control
biases being stronger in the harder task (cf. Gilbert and

Shallice 2002; Yeung and Monsell 2003). According to this
idea, the persisting biases toward the harder task increase

the difficulty of switching away from this task to the easier

task, leading participants to exhibit a surprising preference
for performing the harder task (Yeung 2010). Following

this line of reasoning, our findings suggest that the differ-

ence in control biases between the two tasks was larger in
participants with more autistic traits. The stronger biases

required for the harder task were possibly additionally

enhanced in our high AQ group, creating a significantly
stronger attractor state that is less likely to decay over time,

so that, once the choice for this harder task has been made,

these participants were more inclined to continue per-
forming this overall more effortful task. In other words, the

difference in repetitive behavior observed in our study

seems to be generated by a dynamic interaction of differ-
ences in control biases that individuals varying across the

dimension of autistic traits have for tasks, influencing the

formation of task intentions when the task choice is
voluntary.

This account would also predict the observed persever-

ative behavior in the WCST (e.g., Liss et al. 2001; Ozonoff
and Jensen 1999), in which the interplay of control biases

for tasks become especially important since the tasks are

not defined to the participants in advance. Accordingly,
when the appropriate rule—defined by the experimental

procedure—has been selected and reinforced by feedback,

this task develops a strong attractor state making it hard to
abandon it if the rule implicitly changes. Since in the

WCST task alternatives are not specified, abandoning this

highly preferred task then becomes particularly difficult in
individuals with ASD who seem to be more sensitive to the

influence that differences in control biases have on the

formation of intentions for voluntary actions. Directing
intentions by providing cues, on the other hand, aids task

execution in individuals with ASD, reflected in behavior as

an overall similar pattern between them and their healthy
controls (e.g., Poljac et al. 2010). The influence of control

biases in these instructed designs would be expected to

become apparent as stronger switch cost asymmetries in
individuals with ASD. An interesting analogy comes from

studies examining memory functioning in autism reporting

that, while cued-recall paradigms tend to yield no deviant
performance (e.g., Bowler et al. 1997), free-recall
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paradigms generally lead to diminished performance in this

population (e.g., Gaigg et al. 2008; Smith et al. 2007),
emphasizing again the importance of intentional directing

in autism. Our findings are also in line with the idea of an

open versus closed system account of autism proposed by
Lawson et al. (2003, 2004). According to this view, indi-

viduals with autism are biased to approach the world as a

closed system, that is, as a system in which degrees of
freedom are minimized. According to Lawson and col-

leagues, this bias is why they experience difficulties with
tasks that are more open (i.e., include more variability). In

this type of task, top-down intentions are more crucial, such

is the case in the voluntary procedure used in our study.
It is worthy of note here that, similar to the observation

reported by Millington et al. (2012) in their Experiment 2,

all participants tended to be particularly slow in making the
choice of switching to the more difficult shape task, even

though they exhibited an overall bias toward choosing this

task more often. Participants also took more time to choose
task switches compared to task repetitions (see also Ar-

rington and Logan 2005; Orr and Weissman 2011). In both

conditions they took more time to choose—task switching
in general and switching to the harder task in particular—

suggesting that our choice time findings might reflect

participants’ preference for minimizing effort (e.g.,
Arrington 2008; Arrington and Yates 2009; Lien and

Ruthruff 2008). This preference for less effort is possibly

also reflected in the observed effects between task choice
and stimulus processing. Similar to what other studies

using voluntary procedure have already reported (e.g.,

Arrington an Logan 2005; Mayr and Bell 2006; Yeung
2010), our participants were in general inclined to repeat

the task at hand more often if the stimulus repeated, sug-

gesting that external bottom-up stimulation occasionally
determined the eventual task choice. Importantly, however,

this bottom-up influence of stimulus processing on task

choice seems not to be the driving mechanism behind the
stronger asymmetry in repetition bias detected in the par-

ticipants with more autistic traits: The only difference

between the two groups observed when analyzing the
effects of stimulus repetition on task choice revealed that,

whereas task choices of high AQ participants were not

affected by repetitions of stimulus shape, the participants
with low level of autistic traits were more prone to repeat

the task at hand on these occasions. This finding evidently

implies that the stronger bias toward repeating the shape
task in high AQ participants is not generated by differences

in effects of stimulus repetitions between the two groups.

Three additional issues regarding our findings need
further elaboration. First, the high number of female par-

ticipants in our study reflected the gender distribution in the

population we tested—undergraduate psychology students.
Although additional analyses demonstrated that none of

our findings were significantly affected by gender (Fs\ 1),

the predominantly female population makes it harder to
generalize our findings to the autism population for two

reasons: the prevalence of autism is higher in males, and

male and female individuals with autism seem to differ in
behavior in various aspects (e.g., Lai et al. 2011). Whether

our findings are generalizable to female individuals with

autism only would need to be addressed in future research.
Second, instructions used in voluntary task switching

paradigms typically stress the requirement to choose tasks
randomly and equally often. The instruction regarding

balanced task choices could require participants to keep

track of which tasks they have performed in past, putting
high demands on their working memory. Some studies

have reported that individuals with autism are challenged

on working memory tasks (e.g., Geurts et al. 2004; Zinke
et al. 2010). It could therefore be possible that the observed

differences in our study were predominantly due to the

challenge that our high AQ participants experienced with
keeping track of task history. Interestingly, however, Butler

et al. (2011) recently demonstrated that working memory

capacity is more strongly related to task performance than
to task choice in voluntary task switching. If our AQ

groups differed in the way that they were challenged by

high working memory demands present in the task we
used, then according to Butler et al., this should have been

reflected in the performance measures (RTs and error rates)

of the two groups. We observed no such differences.
Although we cannot exclude the possibility that working

memory contributed to the observed differences between

high and low AQ participants, Butler et al.’s study and our
observations in task performance together would suggest

that our findings would need a broader explanation than

one including working memory only.
Third, it is possible that some other important factors,

such as intelligence, modulated the patterns of behavior in

the population that we tested. One could imagine that the
numerically better performance—observed in the high AQ

participants—was generated by a higher IQ in these indi-

viduals. Since we had no a priori reasons to assume that our
student population would differ in their IQ, we did not

assess any measures of their intelligence. We therefore

cannot exclude the possibility that intelligence significantly
contributed to the observed differences between our

groups. To our knowledge, there are no studies so far

reporting a relation between IQ and performance on vol-
untary task switching paradigms. Interestingly, however,

the few studies that have tested a possible contribution of

IQ to observed differences between high and low AQ
individuals seem not to find any dependence of the AQ

effects on IQ in children (Auyeung et al. 2009) or in adults

(students) for verbal (Stewart and Ota 2008) or full IQ
measures (Grinter et al. 2009). The contribution of IQ to
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behavioral patterns observed in voluntary task switching

paradigms would need to be specified in future research.
In conclusion, the present study indicates that between-

task interference significantly contributes to the tendency

of individuals with autism to engage in repetitive behavior
by modulating the formation of task intentions when tasks

are chosen voluntarily. Our results reveal that the way in

which between-task interference modulates global task
intentions—as measured by behavioral patterns in task

choice—depends on the quantification of where an indi-
vidual lies along the dimension of autistic traits. On the

contrary, the way that task execution—as measured by

behavioral patterns in RTs and errors—is affected by this
interference between the competing tasks seems not to be

related to the amount of autistic traits in healthy

individuals.
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