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1 Introduction

This is a set of notes and annotated examples of the use of the statistical package R. It is “for psychology
experiments and questionnaires” because we cover the main statistical methods used by psychologists who
do research on human subjects, but of course it this is also relevant to researchers in others fields that do
similar kinds of research.

R, like S–Plus, is based on the S language invented at Bell Labs. Most of this should also work with
S–Plus. Because R is open-source (hence also free), it has benefitted from the work of many contributors
and bug finders. R is a complete package. You can do with it whatever you can do with Systat, SPSS, Stata,
or SAS, including graphics. Contributed packages are added or updated almost weekly; in some cases these
are at the cutting edge of statistical practice.

Some things are more difficult with R, especially if you are used to using menus. With R, it helps to have
a list of commands in front of you. There are lists in the on-line help and in the index of An introduction to
R by the R Core Development Team, and in the reference cards listed in http://finzi.psych.upenn.edu/.

Some things turn out to be easier in R. Although there are no menus, the on-line help files are very easy
to use, and quite complete. The elegance of the language helps too, particularly those tasks involving the
manipulation of data.

The purpose of this document is to reduce the difficulty of the things that are more difficult at first. We
assume that you have read the relevant parts of An introduction to R, but we do not assume that you have
mastered its contents. We assume that you have gotten to the point of installing R and trying a couple of
examples.
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2 A few useful concepts and commands

2.1 Concepts

In R, most commands are functions. That is, the command is written as the name of the function, followed
by parentheses, with the arguments of the function in parentheses, separated by commas when there is more
than one, e.g., plot(mydata1). When there is no argument, the parentheses are still needed, e.g., q() to
exit the program.

In this document, we use names such as x1 or file1, that is, names containing both letters and a digit,
to indicate variable names that the user makes up. Really these can be of any form. We use the number
simply to clarify the distinction between a made up name and a key word with a pre-determined meaning
in R. R is case sensitive.

Although most commands are functions with the arguments in parentheses, some arguments require speci-
fication of a key word with an equal sign and a value for that key word, such as source("myfile1.R",echo=T),
which means read in myfile1.R and echo the commands on the screen. Key words can be abbreviated (e.g.,
e=T).

In addition to the idea of a function, R has objects and modes. Objects are anything that you can give
a name. There are many different classes of objects. The main classes of interest here are vector, matrix,
factor, list, and data frame. The mode of an object tells what kind of things are in it. The main modes of
interest here are logical, numeric, and character.

We sometimes indicate the class of object (vector, matrix, factor, etc.) by using v1 for a vector, m1 for
a matrix, and so on. Most R functions, however, will either accept more than one type of object or will
“coerce” a type into the form that it needs.

The most interesting object is a data frame. It is useful to think about data frames in terms of rows and
columns. The rows are subjects or observations. The columns are variables, but a matrix can be a column
too. The variables can be of different classes.

The behavior of any given function, such as plot(), aov() (analysis of variance) or summary() depends
on the object class and mode to which it is applied. A nice thing about R is that you almost don’t need
to know this, because the default behavior of functions is usually what you want. One way to use R is just
to ignore completely the distinction among classes and modes, but check every step (by typing the name of
the object it creates or modifies). If you proceed this way, you will also get error messages, which you must
learn to interpret. Most of the time, again, you can find the problem by looking at the objects involved, one
by one, typing the name of each object.

Sometimes, however, you must know the distinctions. For example, a factor is treated differently from
an ordinary vector in an analysis of variance or regression. A factor is what is often called a categorical
variable. Even if numbers are used to represent categories, they are not treated as ordered. If you use a
vector and think you are using a factor, you can be misled.

2.2 Commands

As a reminder, here is a list of some of the useful commands that you should be familiar with, and some
more advanced ones that are worth knowing about. We discuss graphics in a later section.

2.2.1 Getting help

help.start() starts the browser version of the help files. (But you can use help() without it.) With a fast
computer and a good browser, it is often simpler to open the html documents in a browser while you work
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and just use the browser’s capabilities.

help(command1) prints the help available about command1. help.search("keyword1") searches keywords
for help on this topic.

apropos(topic1) or apropos("topic1") finds commands relevant to topic1, whatever it is.

example(command1) prints an example of the use of the command. This is especially useful for graphics com-
mands. Try, for example, example(contour), example(dotchart), example(image), and example(persp).

2.2.2 Installing packages

install.packages(c("package1","package2")) will install these two packages from CRAN (the main
archive), if your computer is connected to the Internet. You don’t need the c() if you just want one
package. You should, at some point, make sure that you are using the CRAN mirror page that is closest
to you. For example, if you live in the U.S., you should have a .Rprofile file with options(CRAN =
"http://cran.us.r-project.org") in it. (It may work slightly differently on Windows.)

CRAN.packages(), installed.packages(), and update.packages() are also useful. The first tells you
what is available. The second tells you what is installed. The third updates the packages that you have
installed, to their latest version.

To install packages from the Bioconductor set, see the instructions in
http://www.bioconductor.org/reposToolsDesc.html.

When packages are not on CRAN, you can download them and use R CMD INSTALL package1.tar.gz
from a Unix/Linux command line. (Again, this may be different on Windows.)

2.2.3 Assignment, logic, and arithmetic

<- assigns what is on the right of the arrow to what is on the left. (If you use ESS, the _ key will produce
this arrow with spaces, a great convenience.)

Typing the name of the object prints the object. For example, if you say:

t1 <- c(1,2,3,4,5)
t1

you will see 1 2 3 4 5.

Logical objects can be true or false. Some functions and operators return TRUE or FALSE. For exam-
ple, 1==1, is TRUE because 1 does equal 1. Likewise, 1==2 is FALSE, and 1<2 is TRUE. Use all(),
any(), |, ||, &, and && to combine logical expressions, and use ! to negate them. The difference between
the | and || form is that the shorter form, when applied to vectors, etc., returns a vector, while the longer
form stops when the result is determined and returns a single TRUE or FALSE.

Set functions operate on the elements of vectors: union(v1,v2), intersect(v1,v2), setdiff(v1,v2),
setequal(v1,v2), is.element(element1,v1) (or, element1 %in% v1).

Arithmetic works. For example, -t1 yields -1 -2 -3 -4 -5. It works on matrices and data frames too. For
example, suppose m1 is the matrix

1 2 3
4 5 6

Then m1 * 2 is
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2 4 6
8 10 12

Matrix multiplication works too. Suppose m2 is the matrix

1 2
1 2
1 2

then m1 %*% m2 is

6 12
15 30

and m2 %*% m1 is

9 12 15
9 12 15
9 12 15

You can also multiply a matrix by a vector using matrix multiplication, vectors are aligned vertically
when they come after the %*% sign and horizontally when they come before it. This is a good way to find
weighted sums, as we shall explain.

For ordinary multiplication of a matrix times a vector, the vector is vertical and is repeated as many
times as needed. For example m2 * 1:2 yields

1 4
2 2
1 4

Ordinarily, you would multiply a matrix by a vector when the length of the vector is equal to the number
of rows in the matrix.

2.2.4 Vectors, matrices, lists, arrays, and data frames

: is a way to abbreviate a sequence of numbers, e.g., 1:5 is equivalent to 1,2,3,4,5.

c(number.list1) makes the list of numbers (separated by commas) into a vector object. For example,
c(1,2,3,4,5) (but 1:5 is already a vector, so you do not need to say c(1:5)).

rep(v1,n1) repeats the vector v1 n1 times. For example, rep(c(1:5),2) is 1,2,3,4,5,1,2,3,4,5.

rep(v1,v2) repeats each element of the vector v1 a number of times indicated by the corresponding element
of the vector v2. The vectors v1 and v2 must have the same length. For example, rep(c(1,2,3),c(2,2,2))
is 1,1,2,2,3,3. Notice that this can also be written as rep(c(1,2,3),rep(2,3)). (See also the function
gl() for generating factors according to a pattern.)

cbind(v1,v2,v3) puts vectors v1, v2, and v3 (all of the same length) together as columns of a matrix.
You can of course give this a name, such as mat1 <- cbind(v1,v2,v2).

matrix(v1,rows1,colmuns1) makes the vector v1 into a matrix with the given number of rows and columns.
You don’t need to specify both rows and columns, but you do need to put in both commas. You can also
use key words instead of using position to indicate which argument is which, and then you do not need the
commas. For example, matrix(1:10, ncol=5) represents the matrix
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1 3 5 7 9
2 4 6 8 10

Notice that the matrix is filled column by column.

data.frame(vector.list1) takes a list of vectors, all of the same length (error message if they aren’t) and
makes them into a data frame. It can also include factors as well as vectors.

dim(obj1) prints the dimensions of a matrix, array or data frame.

length(vector1) prints the length of vector1.

You can refer to parts of objects. m1[,3] is the third column of matrix m1. m1[,-3] is all the columns
except the third. m1[m1[,1]>3,] is all the rows for which the first column is greater than 3. v1[2] is the
second element of vector v1. If df1 is a data frame with columns a, b, and c, you can refer to the third
column as df1$c.

Most functions return lists. You can see the elements of a list with unlist(). For example, try unlist(t.test(1:5))
to see what the t.test() function returns. This is also listed in the section of help pages called “Value.”

array() seems very complicated at first, but it is extremely useful when you have a three-way classification,
e.g., subjects, cases, and questions, with each question asked about each case. We give an example later.

outer(m1,m2,"fun1") applies fun1, a function of two variables, to each combination of m1 and m2. The
default is to multiply them.

mapply("fun1",o1,o2), another very powerful function, applies fun1 to the elements of o1 and o2. For
example, if these are data frames, and fun1 is "t.test", you will get a list of t tests comparing the first
column of o1 with the first column of o2, the second with the second, and so on. This is because the basic
elements of a data frame are the columns.

2.2.5 String functions

R is not intended as a language for manipulating text, but it is surprisingly powerful. If you know R, you
might not need to learn Perl. Strings are character variables that consist of letters, numbers, and symbols.

strsplit() splits a string, and paste() puts a string together out of components.

grep(), sub(), gsub(), and regexpr() allow you to search for, and replace, parts of strings.

The set functions such as union(), intersect(), setdiff(), and %in% are also useful for dealing with
databases that consist of strings such as names and email addresses.

You can even use these functions to write new R commands as strings, so that R can program itself! Just
to see an example of how this works, try eval(parse(text="t.test(1:5)")). The parse() function turns
the text into an expression, and eval() evaluates the expression. So this is equivalent to t.test(1:5). But
you could replace t.test(1:5) with any string constructed by R itself.

2.2.6 Loading and saving

library(xx1) loads the extra library. A useful library for psychology is and mva (multivariate analysis). To
find the contents of a library such as mva before you load it, say library(help=mva). The ctest library is
already loaded when you start R.

source("file1") runs the commands in file1.

sink("file1") diverts output to file1 until you say sink().

save(x1,file="file1") saves object x1 to file file1. To read in the file, use load("file1").

q() quits the program. q("yes") saves everything.
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write(object, "file1") writes a matrix or some other object to file1.

write.table(object1,"file1") writes a table and has an option to make it comma delimited, so that (for
example) Excel can read it. See the help file, but to make it comma delimited, say
write.table(object1,"file1",sep=",").

round() produces output rounded off, which is useful when you are cutting and pasting R output into a
manuscript. For example, round(t.test(v1)$statistic,2) rounds off the value of t to two places. Other
useful functions are format and formatC. For example, if we assign t1 <- t.test(v1, then the following
command prints out a nicely formatted result, suitable for dumping into a paper:

print(paste("(t_{",t1[[2]],"}=",formatC(t1[[1]],format="f",digits=2),
", p=",formatC(t1[[3]],format="f"),")",sep=""),quote=FALSE)

This works because t1 is actually a list, and the numbers in the double brackets refer to the elements of the
list.

read.table("file1") reads in data from a file. The first line of the file can (but need not) contain the
names of the variables in each column.

2.2.7 Dealing with objects

ls() lists all the active objects.

rm(object1) removes object1. To remove all objects, say rm(list=ls()).

attach(data.frame1) makes the variables in data.frame1 active and available generally.

names(obj1) prints the names, e.g., of a matrix or data frame.

typeof(), mode()), and class() tell you about the properties of an object.

2.2.8 Summaries and calculations by row, column, or group

summary(x1) prints statistics for the variables (columns) in x1, which may be a vector, matrix, or data
frame. See also the str() function, which is similar, and aggregate(), which summarizes by groups.

table(x1) prints a table of the number of times each value occurs in x1. table(x1,y1) prints a cross-
tabulation of the two variables. The table function can do a lot more. Use prop.table() when you want
proportions rather than counts.

ave(v1,v2) yields averages of vector v1 grouped by the factor v2.

cumsum(v1) is the cumulative sum of vector v1.

You can do calculations on rows or columns of a matrix and get the result as a vector. apply(x1,2,mean)
yields just the means of the columns. Use apply(x1,1,mean) for the rows. You can use other functions
aside from mean, such as sd, max, min or sum. To ignore missing data, use apply(x1,2,mean,na.rm=T), etc.
For sums and means, it is easier to use rowSums(), colSums(), rowMeans(), and colMeans instead of
apply(). Note that you can use apply with a function, e.g., apply(x1,1,function(x) exp(sum(log(x)))
(which is a roundabout way to write apply(x1,1,prod)). The same thing can be written in two steps, e.g.:

newprod <- function(x) {exp(sum(log(x)))
apply(x1,1,newprod)

You can refer to a subset of an object in many other ways. One way is to use a square bracket at the
end, e.g., matrix1[,1:5] refers to columns 1 through 5 of the matrix. You can also use this method for
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new objects, e.g., (matrix1+matrix2)[,1:5], which refers to the first five columns of the sum of the two
matrices. Another important method is the use of by() or aggregate() to compute statistics for subgroups
defined by vectors or factors. You can also use split() to get a list of subgroups. Finally, many functions
allow you to use a subset argument.

2.2.9 Functions and debugging

function() allows you to write your own functions.

Several functions are useful for debugging your own functions or scripts: traceback(), debug(), browser(),
recover().

3 Basic method

The following basic method is assumed here. You have a command file and then submit it, for each data set.
Thus, for each experiment or study, you have two files. One consists of the data. Call it exp1.data. The
other is a list of commands to be executed by R, exp1.R. (Any suffixes will do, although ESS recognizes the
R suffix and loads special features for editing.) The advantage of this approach is that you have a complete
record of what your transformed variables mean. If your data set is small relative to the speed of your
computer, it is a good idea to revise exp1.R and re-run it each time you make a change that you want to
keep. So you could have exp1.R open in the window of an editor while you have R in another window.1

To analyze a data set, you start R in the directory where the data and command file are. Then, at the
R prompt, you type

source("exp1.R")

and the command file runs. The first line of the command file usually reads in the data. You may include
statistics and graphics commands in the source file. You will not see the output if you say source("data1.R"),
although they will still run. If you want to see the output, say

source("data1.R",echo=T)

Command files can and should be annotated. R ignores everything after a #. In this document, the
examples are not meant to be run.

We have mentioned ESS, which stands for “Emacs Speaks Statistics.” This is an add-on for the Emacs
editor, making Emacs more useful with several different statistical programs, including R, S–Plus, and SAS.
2 If you use ESS, then you will want to run R as a process in Emacs, so, to start R, say emacs -f R. You
will want exp1.R in another window, so also say emacs exp1.R. With ESS, you can easily cut and paste
blocks (or lines) of commands from one window to another.

Here are some tips for debugging:

• If you use the source("exp1.R") method described here, use source("exp1.R",echo=T) to echo the
input and see how far the commands get before they “bomb.”

1If you want, you can put your data in the same file as the commands. The simplest way to do this is to put commas
between the numbers and then use a command like t1 <- c(1,2,3, ...26,90), possibly over several lines, where the numbers
are your data.

2ESS is wonderful, but Emacs will cause trouble for you if you use a word processor like Word, and if you are used to shortcut
keys such as ctrl-x for cutting text. The shortcut keys in Emacs are all different, and this leads to serious mind-boggle. One
solution, adopted by the first author, is to give up word processors and editors that use the same shortcuts, such as Winedt. A
side effect of this solution is that you have very little reason to use Microsoft Windows.
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• Use ls() to see which objects have been created.

• Often the problem is with a particular function, often because it has been applied to the wrong type
or size of object. Check the sizes of objects with dim() or (for vectors) length().

• Look at the help() for the function in question. (If you use help.start() at the beginning, the
output will appear in your browser. The main advantage of this is that you can follow links to related
functions very easily.)

• Type the names of the objects to make sure they are what you think they are.

• If the help is not helpful enough, make up a little example and try it. For example, you can get a
matrix by saying m1 <- matrix(1:12,,3).

• For debugging functions, try debug(), browser(), and traceback(). (See their help pages. We do
very little with functions here.)

4 Reading and transforming data

4.1 Data layout

R, like Splus and S, represents an entire conceptual system for thinking about data. You may need to learn
some new ways of thinking. One way that is new for users of Systat in particular (but perhaps more familiar
to users of SAS) concerns two different ways of laying out a data set. In the Systat way, each subject is a
row (which may be continued on the next row if too long, but still conceptually a row) and each variable is
a column. You can do this in R too, and most of the time it is sufficient.

But some the features of R will not work with this kind of representation, in particular, repeated-measures
analysis of variance. So you need a second way of representing data, which is that each row represents a
single datum, e.g., one subject’s answer to one question. The row also contains an identifier for all the
relevant classifications, such as the question number, the subscale that the question is part of, AND the
subject. Thus, “subject” becomes a category with no special status, technically a factor (and remember to
make sure it is a factor, lest you find yourself studying the effect of the subject’s number).

4.2 A simple questionnaire example

Let us start with an example of the old-fashioned way. In the file ctest3.data, each subject is a row, and
there are 134 columns. The first four are age, sex, student status, and time to complete the study. The rest
are the responses to four questions about each of 32 cases. Each group of four is preceded by the trial order,
but this is ignored for now.

c0 <- read.table("ctest3.data")

The data file has no labels, so we can read it with read.table.

age1 <- c0[,1]
sex1 <- c0[,2]
student1 <- c0[,3]
time1 <- c0[,4]
nsub1 <- nrow(c0)
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We can refer to elements of c0 by c0[row,column]. For example, c0[1,2] is the sex of the first subject.
We can leave one part blank and get all of it, e.g., c0[,2] is a vector (column of numbers) representing the
sex of all the subjects. The last line defines nsub1 as the number of subjects.

c1 <- as.matrix(c0[,4+1:128])

Now c1 is the main part of the data, the matrix of responses. The expression 1:128 is a vector, which
expands to 1 2 3 . . . 128. By adding 4, it becomes 5 6 7 . . . 132.

4.2.1 Extracting subsets of data

rsp1 <- c1[,4*c(1:32)-2]
rsp2 <- c1[,4*c(1:32)-1]

The above two lines illustrate the extraction of sub-matrices representing answers to two of the four
questions making up each item. The matrix rsp1 has 32 columns, corresponding to columns 2 6 10 ... 126
of the original 128-column matrix c1. The matrix rsp2 corresponds to 3 7 11 ... 127.

Another way to do this is to use an array. We could say a1 <- array(c1,c(ns,4,32)). Then a1[,1,] is
the equivalent of rsp1, and a1[20,1,] is rsp1 for subject 20. To see how arrays print out, try the following:

m1 <- matrix(1:60,5,)
a1 <- array(m1,c(5,2,6))
m1
a1

You will see that the rows of each table are the first index and the columns are the second index. Arrays
seem difficult at first, but they are very useful for this sort of analysis.

4.2.2 Finding means (or other things) of sets of variables

r1mean <- apply(rsp1,1,mean)
r2mean <- apply(rsp2,1,mean)

The above lines illustrate the use of apply for getting means of subscales. In particular, abrmean is the
mean of the subscale consisting of the answers to the second question in each group. The apply function
works on the data in its first argument, then applies the function in its third argument, which, in this case,
is mean. (It can be max or min or any defined function.) The second argument is 1 for rows, 2 for columns
(and so on, for arrays). We want the function applied to rows.

r4mean <- apply(c1[,4*c(1:32)],1,mean)

The expression here represents the matrix for the last item in each group of four. The first argument can be
any matrix or data frame. (The output for a data frame will be labeled with row or column names.) For exam-
ple, suppose you have a list of variables such as q1, q2, q3, etc. Each is a vector, whose length is the number
of subjects. The average of the first three variables for each subject is, apply(cbind(q1,q2,q3),1,mean).
(This is the equivalent of the Systat expression avg(q1,q2,q3). A little more verbose, to be sure, but much
more flexible.)

You can use apply is to tabulate the values of each column of a matrix m1: apply(m1,2,table). Or, to
find column means, apply(m1,2,mean).
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There are many other ways to make tables. Some of the relevant functions are table, tapply, sapply,
ave, and by. Here is an illustration of the use of by. Suppose you have a matrix m1 like this:

1 2 3 4
4 4 5 5
5 6 4 5

The columns represent the combination of two variables, y1 is 0 0 1 1, for the four columns, respectively,
and y2 is 0 1 0 1. To get the means of the columns for the two values of y1, say by(t(m1), y1, mean).
You get 3.67 and 4.33 (labeled appropriately by values of y1). You need to use t(m1) because by works by
rows. If you say by(t(m1), data.frame(y1,y2), mean), you get a cross tabulation of the means by both
factors. (This is, of course, the means of the four columns of the original matrix.)

Of course, you can also use by to classify rows; in the usual examples, this would be groups of subjects
rather than classifications of variables.

4.2.3 One row per observation

The next subsection shows how to transform the data from a layout from “one row per subject” to “one row
per observation.” We’re going to use the matrix rsp1, which has 32 columns and one row per subject. Here
are five subjects:

1 1 2 2 1 2 3 5 2 3 2 4 2 5 7 7 6 6 7 5 7 8 7 9 8 8 9 9 8 9 9 9
1 2 3 2 1 3 2 3 2 3 2 3 2 3 2 4 1 2 4 5 4 5 5 6 5 6 6 7 6 7 7 8
1 1 2 3 1 2 3 4 2 3 3 4 2 4 3 4 4 4 5 5 5 6 6 7 6 7 7 8 7 7 8 8
1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9
1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9

We’ll create a matrix with one row per observation. The first column will contain the observations, one
variable at a time, and the remaining columns will contain numbers representing the subject and the level
of the observation on each variable of interest. There are two such variables here, r2 and r1. The variable
r2 has four levels, 1 2 3 4, and it cycles through the 32 columns as 1 2 3 4 1 2 3 4 ... The variable r1
has the values (for successive columns) 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 1 1 1 1 2 2 2 2 3 3 3 3 4
4 4 4. These levels are ordered. They are not just arbitrary labels. (For that, we would need the factor
function.)

r2 <- rep(1:4,8)
r1 <- rep(rep(1:4,rep(4,4)),2)

The above two lines create vectors representing the levels of each variable for each subject. The rep
command for r2 says to repeat the sequence 1 2 3 4, 8 times. The rep command for r1 says take the
sequence 1 2 3 4, then repeat the first element 4 times, the second element 4 times, etc. It does this by
using a vector as its second argument. That vector is rep(4,4), which means repeat the number 4, 4 times.
So rep(4,4) is equivalent to c(4 4 4 4). The last argument, 2, in the command for r1 means that the
whole sequence is repeated twice. Notice that r1 and r2 are the codes for one row of the matrix rsp1.

nsub1 <- nrow(rsp1)
subj1 <- as.factor(rep(1:nsub1,32))

nsub1 is just the number of subjects (5 in the example), the number of rows in the matrix rsp1. The
vector subj1 is what we will need to assign a subject number to each observation. It consists of the sequence
1 2 3 4 5, repeated 32 times. It corresponds to the columns of rsp1.
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abr1 <- data.frame(ab1=as.vector(rsp1),sub1=subj1,
dcost1=rep(r1,rep(nsub1,32)),abcost1=rep(r2,rep(nsub1,32)))

The data.frame function puts together several vectors into a data.frame, which has rows and columns
like a matrix.3 Each vector becomes a column. The as.vector function reads down by columns, that is,
the first column, then the second, and so on. So ab is now a vector in which the first nsub1 elements are
the same as the first column of rsp1, that is, 1 1 1 1 1. The first 15 elements of ab are: 1 1 1 1 1 1 2
1 2 1 2 3 2 2 1. Notice how we can define names within the arguments to the data.frame function. Of
course, sub now represents the subject number of each observation. The first 10 elements of sub1 are 1 2 3
4 5 1 2 3 4 5. The variable abcost now refers to the value of r2. Notice that each of the 32 elements of
r2 is repeated nsub times. Thus the first 15 values of abcost1 are 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3. Here
are the first 10 rows of abr1:

ab1 sub1 dcost1 abcost1
1 1 1 1 1
2 1 2 1 1
3 1 3 1 1
4 1 4 1 1
5 1 5 1 1
6 1 1 1 2
7 2 2 1 2
8 1 3 1 2
9 2 4 1 2
10 1 5 1 2

The following line makes a table of the means of abr1, according to the values of dcost1 (rows) and
abcost1 (columns).

ctab1 <- tapply(abr1[,1],list(abr1[,3],abr1[,4]),mean)

It uses the function tapply, which is like the apply function except that the output is a table. The first
argument is the vector of data to be used. The second argument is a list supplying the classification in the
table. This list has two columns corresponding to the columns of abr representing the classification. The
third argument is the function to be applied to each grouping, which in this case is the mean. Here is the
resulting table:

1 2 3 4
1 2.6 3.0 3.7 3.8
2 3.5 4.4 4.4 5.4
3 4.5 5.2 5.1 5.9
4 5.1 6.1 6.2 6.8

The following line provides a plot corresponding to the table.

matplot(ctab1,type="l")

Type l means lines. Each line plots the four points in a column of the table. If you want it to go by
rows, use t(ctab1) instead of ctab1. The function t() transposes rows and columns.

Finally, the following line does a regression of the response on the two classifiers, actually an analysis of
variance.

3The cbind function does the same thing but makes a matrix instead of a data frame.
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summary(aov(ab1 ~ dcost1 + abcost1 + Error(sub1/(dcost1 + abcost1)),data=abr))

The function aov, like lm, fits a linear model, because dcost1 and abcost1 are numerical variables, not
factors (although sub1 is a factor). The model is defined by its first argument (to the left of the comma),
where ~ separates the dependent variable from the predictors. The second element defines the data frame
to be used. The summary function prints a summary of the regression. (The lm and aov objects themselves
contains other things, such as residuals, many of which are not automatically printed.) We explain the Error
term later, but the point of it is to make sure that we test against random variation due to subjects, that
is, test “across subjects.” Here is some of the output, which shows significant effects of both predictors:

Error: sub1
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 4 52.975 13.244

Error: sub1:dcost1
Df Sum Sq Mean Sq F value Pr(>F)

dcost1 1 164.711 164.711 233.63 0.0001069 ***
Residuals 4 2.820 0.705
---

Error: sub1:abcost1
Df Sum Sq Mean Sq F value Pr(>F)

abcost1 1 46.561 46.561 41.9 0.002935 **
Residuals 4 4.445 1.111
---

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 145 665.93 4.59

4.3 Other ways to read in data

First example. Here is another example of creating a matrix with one row per observation.

symp1 <- read.table("symp1.data",header=T)
sy1 <- as.matrix(symp1[,c(1:17)])

The first 17 columns of symp1 are of interest. The file symp1.data contains the names of the variables
in its first line. The header=T (an abbreviation for header=TRUE) makes sure that the names are used;
otherwise the variables will be names V1, V2, etc.

gr1 <- factor(symp1$group1)

The variable group1, which is in the original data, is a factor that is unordered.

The next four lines create the new matrix, defining identifiers for subjects and items in a questionnaire.

syv1 <- as.vector(sy1)
subj1 <- factor(rep(1:nrow(sy1),ncol(sy1)))
item <- factor(rep(1:ncol(sy1),rep(nrow(sy1),ncol(sy1))))
grp <- rep(gr1,ncol(sy1))
cgrp <- ((grp==2) | (grp==3))+0
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The variable cgrp is a code for being in grp 2 or 3. The reason for adding 0 is to make the logical vector
of T and F into a numeric vector of 1 and 0.

The following three lines create a table from the new matrix, plot the results, and report the results of
an analysis of variance.

sytab <- tapply(syv,list(item,grp),mean)
matplot(sytab,type="l")
svlm <- aov(syv ~ item + grp + item*grp)

Second example. In the next example, the data file has labels. We want to refer to the labels as if they
were variables we had defined, so we use the attach function.

t9 <- read.table("tax9.data",header=T)
attach(t9)

Third example. In the next example, the data file has no labels, so we can read it with scan. The scan
function just reads in the numbers and makes them into a vector, that is, a single column of numbers.

abh1 <- matrix(scan("abh1.data"),,224,byrow=T))

We then apply the matrix command to make it into a matrix. (There are many other ways to do
this.) We know that the matrix should have 224 columns, the number of variables, so we should specify
the number of columns. If you say help(matrix) you will see that the matrix command requires several
arguments, separated by commas. The first is the vector that is to be made into a matrix, which in this case
is scan("abh1.data"). We could have given this vector a name, and then used its name, but there is no
point. The second and third arguments are the number of rows and the number of columns. We can leave
the number of rows blank. (That way, if we add or delete subjects, we don’t need to change anything.) The
number of columns is 224. By default, the matrix command fills the matrix by columns, so we need to say
byrow=TRUE or byrow=T to get it to fill by rows, which is what we want. (Otherwise, we could just leave
that field blank.)

We can refer to elements of abh1 by abh1[row,column]. For example, abh[1,2] is the sex of the first
subject. We can leave one part blank and get all of it, e.g., abh1[,2] is a vector (column of numbers)
representing the sex of all the subjects.

4.4 Other ways to transform variables

4.4.1 Contrasts

Suppose you have a matrix t1 with 4 columns. Each row is a subject. You want to contrast the mean of
columns 1 and 3 with the mean of columns 2 and 4. A t-test would be fine. (Otherwise, this is the equivalent
of the cmatrix command in Systat.) Here are three ways to do it. The first way calculates the mean of
the columns 1 and 3 and subtracts the mean of columns 2 and 4. The result is a vector. When we apply
t.test() to a vector, it tests whether the mean of the values is different from 0.

t.test(apply(t1[c(1,3),],2,mean)-apply(t1[c(2,4),],2,mean))

The second way multiplies the matrix by a vector representing the contrast weights, 1, -1, 1, -1.
Ordinary multiplication of a matrix by a vector multiplies the rows, but we want the columns, so we must
apply t() to transform the matrix, and then transform it back.
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t.test(t(t(t1)*c(1,-1,1,-1)))

or

contr1 <- c(1,-1,1,-1)
t.test(t(t(t1)*contr1))

The third way is the most elegant. It uses matrix multiplication to accomplish the same thing.

contr1 <- c(1,-1,1,-1)
t.test(t1 %*% contr1)

4.4.2 Averaging items in a within-subject design

Suppose we have a matrix t2, with 32 columns. Each row is a subject. The 32 columns represent a 8x4
design. The first 8 columns represent 8 different levels of the first variable, at the first level of the second
variable. The next 8 columns are the second level of the second variable, etc. Suppose we want a matrix in
which the columns represent the 8 different levels of the first variable, averaged across the second variable.

First method: loop. One way to do it — inelegantly but effectively — is with a loop. First, we set up
the resulting matrix. (We can’t put anything in it this way if it doesn’t exist yet.)

m2 <- t2[,c(1:8)]*0

The idea here is just to make sure that the matrix has the right number of rows, and all 0’s. Now here
is the loop:

for (i in 1:8) m2[,i] <- apply(t2[,i+c(8*0:3)],1,mean)

Here, the index i is stepped through the columns of m2, filling each one with the mean of four columns
of t2. For example, the first column of m2 is the mean of columns 1, 9, 17, and 25 of t2. This is because the
vector c(8*0:3) is 0, 8, 16, 24. The apply function uses 1 as its second argument, which means to apply
the function mean across rows.

Second method: matrix multiplication. Now here is a more elegant way, but one that requires an
auxiliary matrix, which may use memory if that is a problem. This time we want the means according to
the second variable, which has four levels, so we want a matrix with four columns. We will multiply the
matrix t2 by an auxiliary matrix c0.

The matrix c0 has 32 rows and four columns. The first column is 1,1,1,1,1,1,1,1 followed by 24 0’s. This
is the result of rep(c(1,0,0,0),rep(8,4)), which repeats each of the elements of 1,0,0,0 eight times (since
rep(8,4) means 8,8,8,8). The second column is 8 0’s, 8 1’s, and 16 0’s.

c0 <- cbind(rep(c(1,0,0,0),rep(8,4)),rep(c(0,1,0,0),rep(8,4)),
rep(c(0,0,1,0),rep(8,4)),rep(c(0,0,0,1),rep(8,4)))

c2 <- t2 %*% c0

The last line above uses matrix multiplication to create the matrix c2, which has 4 columns and one row
per subject. Note that the order here is important; switching t2 and c0 will not work.
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4.4.3 Selecting cases or variables

There are several other ways for defining new matrices or data frames as subsets of other matrices or data
frames.

One very useful function is which(), which yields the indices for which its argument is true. For example,
the output of which(3:10 > 4) is the vector 3 4 5 6 7 8, because the vector 3:10 has a length of 8, and
the first two places in it do not meet the criterion that their value is greater than 4. With which(), you
can use a vector to select rows or columns from a matrix (or data frame). For example, suppose you have
nine variables in a matrix m9 and you want to select three sub-matrices, one consisting of variables 1, 4, 7,
another with 2, 5, 8, and another with 3, 6, 9. Define mvec so that it is the vector 1 2 3 1 2 3 1 2 3.

mvec9 <- rep(1:3,3)
m9a <- m9[,which(mvec9 == 1)]
m9b <- m9[,which(mvec9 == 2)]
m9c <- m9[,which(mvec9 == 3)]

You can use the same method to select subjects by any criterion, putting the which() expression before
the comma rather than after it, so that it indicates rows.

4.4.4 Recoding and replacing data

Suppose you have m1 a matrix of data in which 99 represents missing data, and you want to replace each 99
with NA. Simply say m1[m1==99] <- NA. Note that this will work only if m1 is a matrix (or vector), not a
data frame (which could result from a read.table() command). You might need to use the as.matrix()
function first.

Sometimes you want to recode a variable, e.g., a column in a matrix. If q1[,3] is a 7-point scale and
you want to reverse it, you can say

q1[,3] <- 8 - q1[,3]

In general, suppose you want to recode the numbers 1,2,3,4,5 so that they come out as 1,5,3,2,4, respec-
tively. You have a matrix m1, containing just the numbers 1 through 5. You can say

c1 <- c(1,5,3,2,4)
apply(m1,1:2,function(x) c1[x])

In this case c1[x] is just the value at the position indicated by x.

Suppose that, instead of 1 through 5, you have A through E, so that you cannot use numerical positions.
You want to convert A,B,C,D,E to 1,5,3,2,4, respectively. You can use two vectors:

c1 <- c(1,5,3,2,4)
n1 <- c("A","B","C","D","E")
apply(m1,1:2,function(x) c1[which(n1)==x])

Or, alternatively, you can give names to c1 instead of using a second vector:

c1 <- c(1,5,3,2,4)
names(c1) <- c("A","B","C","D","E")
apply(m1,1:2,function(x) c1[x])
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The same general idea will work for arrays, vectors, etc., instead of matrices.

Here are some other examples, which may be useful in simple cases, or as illustrations of various tricks.

In this example, q2[,c(2,4)] are two columns that must be recoded by switching 1 and 2 but leaving
responses of 3 or more intact. To do this, say

q2[,c(2,4)] <- (q2[,c(2,4)] < 3) * (3 - q2[,c(2,4)]) +
(q2[,c(2,4)] >= 3) * q2[,c(2,4)]

Here the expression q2[,c(2,4)] < 3 is a two-column matrix full of TRUE and FALSE. By putting it in
parentheses, you can multiply it by numbers, and TRUE and FALSE are treated as 1 and 0, respectively. Thus,
(q2[,c(2,4)] < 3) * (3 - q2[,c(2,4)]) switches 1 and 2, for all entries less than 3. The expression
(q2[,c(2,4)] >= 3) * q2[,c(2,4)] replaces all the other values, those greater than or equal to 3, with
themselves.

Here is an example that will switch 1 and 3, 2 and 4, but leave 5 unchanged, for columns 7 and 9

q3[,c(7,9)] <- (q3[,c(7,9)]==1)*3 + (q3[,c(7,9)]==2)*4 +
(q3[,c(7,9)]==3)*1 + (q3[,c(7,9)]==4)*2 + (q3[,c(7,9)]==5)*5

Notice that this works because everything on the right of <- is computed on the values in q3 before any of
these values are replaced.

4.4.5 Replacing characters with numbers

Sometimes you have questionnaire data in which the responses are represented as (for example) “y” and
“n” (for yes and no). Suppose you want to convert these to numbers so that you can average them. The
following command does this for a matrix q1, whose entries are y, n, or some other character for “unsure.”
It converts y to 1 and n to -1, leaving 0 for the “unsure” category.

q1 <- (q1[,]=="y") - (q1[,]=="n")

In essence, this works by creating two new matrices and then subtracting one from the other, element by
element.

4.5 Using R to compute course grades

Here is an example that might be useful as well as instructive. Suppose you have a set of grades including a
midterm with two parts m1 and m2, a final with two parts, and two assignments. You told the students that
you would standardize the midterm scores, the final scores, and each of the assignment scores, then compute
a weighted sum to determine the grade. Here, with comments, is an R file that does this. The critical line
is the one that standardizes and computes a weighted sum, all in one command.

g1 <- read.csv("grades.csv",header=F) # get the list of scores
a1 <- as.vector(g1[,4])
m1 <- as.vector(g1[,5])
m2 <- as.vector(g1[,6])
a2 <- as.vector(g1[,7])
f1 <- as.vector(g1[,8])
f2 <- as.vector(g1[,9])
a1[a1=="NA"] <- 0 # missing assignment 1 gets a 0
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m <- 2*m1+m2 # compute midterm score from the parts
f <- f1+f2
gdf <- data.frame(a1,a2,m,f)
gr <- apply(t(scale(gdf))*c(.10,.10,.30,.50),2,sum)
# The last line standardizes the scores and computes their weighted sum
# The weights are .10, .10, .30, and .50 for a1, a2, m, and f

gcut <- c(-2,-1.7,-1.4,-1.1,-.80,-.62,-.35,-.08,.16,.40,.72,1.1,2)
# The last line defines cutoffs for letter grades.

glabels <- c("f","d","d+","c-","c","c+","b-","b","b+","a-","a","a+")
gletter <- cut(gr,gcut,glabels) # creates a vector of letter grades
grd <- cbind(g1[,1:2],round(gr,digits=4),gletter) # makes a matrix
# gl[,1:2] are students’ names

grd[order(gr),] # sorts the matrix in rank order and prints it
round(table(gletter)/.83,1) # prints, with rounding
# the .83 is because there are 83 students, also gets percent

gcum <- as.vector(round(cumsum(table(gletter)/.83),1))
names(gcum) <- glabels
gcum # prints cumulative sum of students with different grades

5 Graphics

R can do presentation-quality and publication-quality graphics. These often require some trial-and-error
manipulation of labels, line styles, axes, fonts, etc., and you should consult the help pages and the Introduction
for more details. The emphasis in this section is on the use of graphics for data exploration, but we provide
some leads into the more advanced uses.

One trick with graphics is to know how each of the various graphics commands responds (or fails to
respond) to each kind of data object: data.frame, matrix, and vector. Often, you can be surprised.

5.1 Default behavior of basic commands

Here is the default behavior for each object for each of some of the plotting commands, e.g., plot(x1) where
x1 is a vector, matrix, or data frame.

vector matrix data.frame
plot values as function of position 2nd column as function of 1st plots of each column as func-

tion of others
boxplot one box for whole vector one box for all values in ma-

trix
one box for each column
(variable)

barplot one bar for each position,
height is value

one bar for each column,
summing successive values in
colors

error

matplot one labeled point for each po-
sition, height is value

X axis is row, Y is value, label
is column

X axis is row, Y is value, label
is column

The barplot of a matrix is an interesting display worth studying. Each bar is stack of smaller bars in
different colors. Each smaller bar is a single entry in the matrix. The colors represent the row. Adjacent
negative and positive values are combined. (It is easier to understand this plot if all values have the same
sign.)
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5.2 Other graphics

To get a bar plot of the column means in a data frame df1, you need to say
barplot(height=apply(df1),2,mean)).

To get a nice parallel coordinate display like that in Systat, use matplot but transform the matrix and
use lines instead of points, that is: matplot(t(mat1),type="l"). You can abbreviate type with t.

matplot(v1, m1, type="l") also plots the columns of the matrix m1 on one graph, with v1 as the
horizontal axis. This is a good way to get plots of two functions on one graph.

To get scatterplots of the columns of a matrix against each other, use pairs(x1), where x1 is a matrix
or data frame. (This is like “splom” in Systat, which is the default graph for correlation matrices.)

Suppose you have a measure y1 that takes several different values, and you want to plot histograms
of y1 for different values of x1, next to each other for easy comparison. The variable x1 has only two or
three values. A good plot is stripchart(y1 ~ x1, method=’stack’). When y1 is more continuous, try
stripchart(y1 ~ x1, method=’jitter’).

Here are some other commands in their basic form. There are several others, and each of these has several
variants. You need to consult the help pages for details.

plot(v1,v2) makes a scatterplot of v2 as a function of v1. If v1 and v2 take only a small number of
values, so that the plot has many points plotted on top of each other, try plot(jitter(v1),jitter(v2)).

hist(x1) gives a histogram of vector x1.

coplot(y1 ~ x1 | z1) makes several plots of y1 as a function of x1, each for a different range of values
of z1.

interaction.plot(factor1,factor2,v1) shows how v1 depends on the interaction of the two factors.

Many wonderful graphics functions are available in the Grid and Lattice packages. Many of these are
illustrated and explained in Venables and Ripley (1999).

5.3 Saving graphics

To save a graph as a png file, say png("file1.png"). Then run the command to draw the graph, such as
plot(x1,y1). Then say dev.off(). You can change the width and height with arguments to the function.
There are many other formats aside from png, such as pdf, and postscript. See help(Devices).

There are also some functions for saving graphics already made, which you can use after the graphic is
plotted: dev.copy2eps("file1.eps") and dev2bitmap().

5.4 Multiple figures on one screen

The par() function sets graphics parameters. One type of parameter specifies the number and layout of multi-
ple figures on a page or screen. This has two versions, mfrow and mfcol. The command par(mfrow=c(3,2)),
sets the display for 3 rows and 2 columns, filled one row at a time. The command fpar(mfcol=c(3,2))
also specifies 3 rows and 2 columns, but they are filled one column at a time as figures are plotted by other
commands.

Here is an example in which three histograms are printed one above the other, with the same horizontal
and vertical axes and the same bar widths. The breaks are every 10 units. The freq=FALSE command means
that densities are specified rather than frequencies. The ylim commands set the range of the vertical axis.
The dev.print line prints the result to a file. The next three lines print out the histogram as numbers
rather than a plot; this is accomplished with print=FALSE. These are then saved to hfile1.



6 STATISTICS 21

par(mfrow=c(3,1))
hist(vector1,breaks=10*1:10,freq=FALSE,ylim=c(0,.1))
hist(vector2,breaks=10*1:10,freq=FALSE,ylim=c(0,.1))
hist(vector3,breaks=10*1:10,freq=FALSE,ylim=c(0,.1))
dev.print(png,file="file1.png",width=480,height=640)
h1 <- hist(vector1,breaks=10*1:10,freq=FALSE,ylim=c(0,.1),plot=FALSE)
h2 <- hist(vector2,breaks=10*1:10,freq=FALSE,ylim=c(0,.1),plot=FALSE)
h3 <- hist(vector3,breaks=10*1:10,freq=FALSE,ylim=c(0,.1),plot=FALSE)
sink("hfile1")
h1
h2
h3
sink()

For simple over-plotting, use par(new=T). Of course, this will also plot axis labels, etc. To avoid that,
you might say par(new=T,ann=F). (Apparent undocumented feature: this setting conveniently disappears
after it is used once.) To plot several graphs of the same type, you can also use points(), lines(), or
matplot().

5.5 Other graphics tricks

When you use plot() with course data (e.g., integers), it often happens that points fall on top of each other.
There are at least three ways to deal with this. One is to use stripchart() (see above). Another is to apply
jitter() to one or both of the vectors plotted against each other, e.g., plot(jitter(v1),v2). A third is to
use sunflowerplot(v1,v2), which uses symbols that indicated how many points fall in the same location.

Use identify() to find the location and index of a point in a scatterplot made with plot(). Indicate
the point you want by clicking the mouse on it. The function locator() just gives the coordinates of the
point. This is useful for figuring out where you want to add things to a plot, such as a legend.

text() uses a vector of strings instead of points in a plot. If you want a scatterplot with just these
name, first make an empty plot (with type="n") to get the size of the plot correct) and then use the text
command, e.g.:

x <- 1:5
plot(x,x^2,type="n")
text(x,x^2,labels=c("one","two","three","four","five"),col=x)

In this case, the col=x argument plots each word in a different color.

To put a legend on a plot, you can use the “legend=” argument of the plotting function, or the legend()
function, e.g., legend(3,4,legend=c("Self","Trust"),fill=c("gray25","gray75")). This example il-
lustrates the use of gray colors indicated by number, which is convenient for making graphics for publication.
(For presentation or data exploration, the default colors are usually excellent.)

Several functions will draw various things on graphs. polygon() and segments() draw lines. They differ
in the kind of input they want, and the first one closes the polygon it draws.

6 Statistics

This section is not a summary of all statistics but, rather, a set of notes on procedures that are more useful
to the kind of studies that psychology researchers do.
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6.1 Very basic statistics

Here is a list of some of the commands psychologists use all the time:

t.test(a1,b1) — Test the difference between the means of vectors a1 and b1.

t.test(a1,b1,paired=TRUE) or t.test(a1,b1,p=T), or, even simpler, t.test(b1-a1) — Test the dif-
ference between means of vectors a1 and b1 when these represent paired measures, e.g., variables for the
same subject. The vectors can be parts of matrices or data.frames. A good plot to look at is

plot(a1,b1)
abline(0,1)

This plots b1 as a function of a1 and then draws a diagonal line with an intercept of 0 and a slope of 1.
Another plot is matplot(t(cbind(a1,b1)),type="l"), which shows one line for each pair.

Sometimes you want to do a t-test comparing two groups represented in the same vector, such as males
and females. For example, you have a vector called age1 and a vector called sex1, both of the same
length. Subject i1’s age and sex are age1[i1] and sex1[i1]. Then a test to see if the sexes differ in age is
t.test(age1[sex1==0],age1[sex1==1]) (or perhaps t.test(age1[sex1==0],age1[sex1==1],var.equal=T)
for the assumption of equal variance). A good plot to do with this sort of test is
stripchart(age1 sex1,method=’jitter’) (or stripchart(age1 sex1,method=’stack’) if there are only
a few ages represented).

The binomial test (sign test) for asking whether heads are more likely than tails (for example) uses
prop.test(h1,n1), where h1 is the number of heads and n1 is the number of coin tosses. Suppose you have
two vectors a1 and b1 of the same length, representing pair of observations on the same subjects, and you want
to find whether a1 is higher than b1 more often than the reverse. Then you can say prop.test(sum(a1>b1),
sum(a1>b1)+sum(a1<b1)). The use of the sum of sums as the second argument excludes those cases where
a1==b1. prop.test can also be used to compare several different proportions. (See the help file.)

chisq.test(x1) does a chi-square test on a matrix x1, where the cells represent counts in a classification
table. There are several other ways of using this function. One other useful one is chisq.test(a1,b1),
where a1 and b1 are vectors or factors of the same length, representing the levels on which observations are
classified. For example,

a1 <- c(1,1,1,1,1,1,1,0,0,0,0,0,0)
b1 <- c(1,1,1,1,1,1,0,0,0,0,0,0,1)
chisq.test(a1,b1)

will yield an almost significant result, since the two vectors match except for two cases. If you want a Fisher
exact test instead of chi-square (for a 2x2 table), you just use fisher.test() instead of chisq.test().

A related test is mantelhaen.test. It, and many useful nonparametric tests, are in the ctest package
(which is loaded automatically but has its own help listing separate from base). Some of these tests can be
exact. More generally, see the loglin function, which requires no special package, and the loglm function
in the MASS package, which allows models to be specified in a form like linear models.

cor(a1) — Show the correlations of the columns for a matrix or data frame a1.

cor.test(a1,b1) — Show the correlation between vectors a1 and b1 and its significance.

Partial correlation is the correlation of the residuals, and this is one way to compute it. Thus, the partial
correlation of x1 and y1, partialling z1, is cor(lm(x1~z1)$resid,lm(y1~z1)$resid). As we shall explain,
lm is the function to fit a linear model, and resid is one of the elements that it returns (not usually printed,
but available). The significance of the partial correlation is the same as the significance of the regression
coefficient, so (again, as we shall explain) use summary(lm(x1 ~ y1 + z1)) to get it.
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For factor analysis, you need the mva library, so say library(mva) to load it. The main command is
factanal(m1,factors=3). (The number of factors can be varied.) Varimax is the default rotation, but you
can also say, for example, factanal(m1,factors=4,rotation="promax").

Principal components analysis is also in the mva library. The most useful commands are print(prcomp(x1))
to get the components of matrix or data.frame x1, and plot(prcomp(x1)) to see a scree plot of the variances
accounted for by the components. The eigenvalues are the squares of the sdev values that are part of the
output of print(prcomp(x1)).

The same library also does cluster analysis, e.g., kmeans(x1,3) where 3 is the number of clusters. If you
want to define a factor identifying the cluster of each subject, you can say
f1 <- as.factor(kmeans(x1,3)$cluster), or, if you just want the numbers and don’t care about whether
you have a factor, v1 <- kmeans(x1,3)$cluster. To see a plot of the variable means for the 3 clusters, say
matplot(t(v1),t="l"). (The last part abbreviates type="lines".

Multiple tests are well handled by the multtest package, with is part of the Bioconductor packages. (See
Section 2.2.2.) The documentation in that package provides a good introduction, with citations. The classic
Bonferroni method is often unnecessarily conservative. On the other hand, multiple tests can sometimes be
avoided by clear statement of a hypothesis and an effort to find the single best test of it.

6.2 Reliability of a test

Suppose v1 is a matrix in which the rows are subjects and each column is a test item. You want to calculate
the coefficient alpha, a measure of the reliability of the test (Lord & Novick, 1968, p. 88):

α =
n

n− 1

[
1−

∑
σ2(Yi)
σ2

X

]

Here is the expression of this in R. (Alpha is now available in the psy package.) The expression nv is the
number of variables. (If you know this, you can just put it in the formula instead of nv).

nv1 <- ncol(v1)
(nv1/(nv1-1))*(1 - sum(apply(v1,2,var))/var(apply(v1,1,sum)))

Crucial here is the use of the apply function to rows and columns. The first use of apply finds the
variance of each column of the matrix. The 2 indicates columns. Then we take the sum of these. The second
application finds the total score for each subject by applying the function sum to each row. We then find the
variance of this sum.

Another way to compute alpha involves the variance-covariance matrix of the items.

tvar1 <- var(v1, na.rm = FALSE) # missing data aborts var()

The sum of values along the main diagonal of the variance-covariance matrix (tvar1) equals the numerator
of the right-hand term in the formula, and the sum of all elements in tvar1 equals the denominator, so alpha
is:

(nv1/(nv1-1)) * (1 - sum(diag(tvar1))/sum(tvar1))

This approach is better for large data sets, because the apply function uses a lot of memory.

Now suppose that you want to see what happens if you delete item 3. You can do this by deleting
variables in each formula (remembering in each case to change the value of nv1):
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(nv1/(nv1-1)*(1 - sum(apply(v1[,-3],2,var))/var(apply(v1[-3],1,sum)))

(nv1/(nv1-2)) * (1 - sum(diag(tvar[-3,-3]))/sum(tvar[-3,-3]))

The advantage of using the variance-covariance matrix is that the effect of deleting certain items can be
determined easily.

6.3 Goodman-Kruskal gamma

The Goodman-Kruskal gamma statistic (also known as γ) is like tau (τ) except for the denominator. It is
an easily interpreted measure of rank correlation between two vectors v1 and v2. The idea is to consider all
pairs of observations in each vector: observations 1 and 2, 1 and 3, and so on. Count the number of times
their ordering agrees, and call this S+. Count the number of times their ordering disagrees and call this S-.
If one variable is tied, this does not count either way. Then γ = S+−S−

S++S− . In other words, it is the number of
agreements minus the number of disagreements, all divided by the total of agreements and disagreements.
A γ of 1 means that the correlation is as high as it can be, given the ties.

Gamma is available in the Hmisc package, in the rcorr.cens() function. To compute it for v1 and v1,
say rcorr.cens(v1,v2,outx=T). The outx argument concerns whether ties are ignored (as they should be).
The Dxy value is what you want.

An instructive, but slower, function to compute gamma is:

goodman <- function(x,y){
Rx <- outer(x,x,function(u,v) sign(u-v))
Ry <- outer(y,y,function(u,v) sign(u-v))
S1 <- Rx*Ry
return(sum(S1)/sum(abs(S1)))}

To compute gamma for v1 and v2, say goodman(v1,v2).

6.4 Inter-rater agreement

An interesting statistical question came up when we started thinking about measuring the agreement between
two people coding video-tapped interviews. This section discusses two such measures. One is the percentage
agreement among the raters, the other is the kappa statistic commonly used for assessing inter-rater reliability
(not to be confused with the R function called kappa). We will first summarize how either of them is derived,
then we will use an example to show that kappa is better than percentage agreement. (Kappa is now available
in the concord package, and another version in psy for more than two raters.)

Our rating task is as follows. Two raters, LN and GF, viewed the video-tapped interviews of 10 families.
The raters judged the interviews on a check list of 8 items. The items were about the parent’s attitude and
goals. The rater marks a ’yes’ on an item if the parents expressed feelings or attitudes that fit the item and
’no’ otherwise. A yes is coded as 1 and a no 0.

The next table shows how the two raters classified the 10 families on Items 2 and 4.
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Family
Item 2

A B C D E F G H I J
LN 0 0 0 0 1 1 1 1 1 1
GF 0 1 1 1 1 1 1 1 1 1

Item 4
LN 0 1 0 0 1 1 0 0 0 0
GF 0 1 0 0 1 0 0 1 0 1

Note that in both items, the two raters agreed on the classifications of 7 out of 10 families. However, In
Item 4, rater LN gave more no’s and GF gave about equal yeses and no’s. In Item 2, rater GF gave 9 yeses
and only 1 no. It turns out that this tendency to say yes or no affects the raters’ agreement adjusted for
chance. We will get to that in a moment.

Suppose that Item 2 was whether or not our interviewees thought that “learning sign language will
mitigate the development of speech for a child who is deaf or hard of hearing”. We want to know how much
LN and GF agreed. The agreement is what we call an inter-rater reliability. They might agree positively
(both LN and GF agreed that the parents thought so) or negatively (i.e., a no - no pair).

Our first measure, the percentage of agreement, is the proportion of families that the raters made the
same classifications. We get a perfect agreement (100%) if the two raters make the same classification for
every family. A zero percent means complete disagreement. This is straightforward and intuitive. People
are familiar with a 0% to 100% scale.

One problem with percent agreement is that it does not adjust for chance agreement, the chance that
the raters happen to agree on a particular family. Suppose, for example, that after the raters have forgotten
what they did the first time, we ask them to view the videotape of family A again. Pure chance may lead
to a disagreement this time; or perhaps even an agreement in the opposite direction.

That is where the κ statistic comes in. Statistics like kappa adjust for chance agreement by subtracting
them out:

κ =
Pr(observed agreement)− Pr(chance agreement)

Pr(maximum possible agreement)− Pr(chance agreement)
,

where the chance agreement depends on the marginal classifications. The marginal classifications, in our
case, refer to each rater’s propensity to say “yes” or “no”. The chance agreement depends in part on how
extreme the raters are. If, for example, rater 1 gave 6 yeses and 4 no’s and rater 2 gave 9 yeses and only 1
no, then there is a higher chance for the raters to agree on yes-yes rather than no-no; and a disagreement is
more likely to occur when rater 2 says yes and rater 1 says no.

Therefore, for the same proportion of agreement, the chance-adjusted kappa may be different. Although
we do not usually expect a lot of difference. We can use the following example to understand how it works.

The numbers in the following table are the number of families who were classified by the raters. In both
items, raters LN and GF agreed on the classification of 7 families and disagreed on 3 families. Note that
they had very different marginal classifications.

If we only look at the percentage of agreement, then LN and GF have the same 70% agreement on Items
2 and 4. However, the κ agreement is 0.29 for Item 2 and 0.35 for Item 4.

Item 2 Item 4
rater GF rater GF

yes no marginal yes no marginal
rater yes 6 0 6 2 1 3
LN no 3 1 4 2 5 7

9 1 10 4 6 10

Why? We can follow the formula to find out. In both items, the observed agreement, when expressed as
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counts, is the sum of the numbers along the diagonal. For Item 2 it is (6 + 1) = 7. Divide that by 10 you
get 70% agreement. The maximum possible number of agreement is therefore 10/10.

The chance agreement for Item 2 is (6/10) × (9/10) + (4/10) × (1/10). That is the probability of both
raters said ‘yes’ plus both said ‘no’. Rater LN gave 6 yeses and GF gave 9 yeses. There is a 6

10 probability
for LN to say yes and a 9

10 probability for GF to say yes. Therefore, the joint probability, i.e., the chance
for us to get a yes-yes classification, is 6

10 × 9
10 . Similarly, the probability of a no-no classification is 4

10 × 1
10 .

For Item 2, we have κ = 7
10 − 58

100/ 10
10 − 58

100 = 0.29. The κ for Item 4 is 7
10 − 54

100/10
10 − 54

100 = 0.35. The
kappa statistics are different between Items 2 and 4 because their chance agreements are different. One is 58

100
and the other is 54

100 . The marginals of the two tables show us that the two raters made more yes judgments
in one instance and more no judgments in the other. That in itself is OK, the raters make the classifications
according to what they observe. There is no reason for them to make equal amount of yeses and no’s. The
shift in the propensity to make a particular classification inevitably affects getting an agreement by chance.
This correction for chance may lead to complications when the raters are predominantly positive or negative.
The paper by Guggenmoos-Holzmann (1996) has a good discussion.4

The same principle applies to two raters making multiple classifications such as ‘aggressive’, ‘compulsive’,
and ‘neurotic’, or some other kinds of judgments. An important thing to remember is that we are only using
kappa to compare classifications that bear no rank-ordering information. Here a ‘yes’ classification is not
better or worse than a ‘no’. There are other ways to check agreement, for example, between two teachers
giving letter grades to homework assignments. An ‘A+’ grade is better than an ‘A-’. But that is a separate
story.

Kappa is available in the e1071 package as classAgreement(), which requires a contingency table as
input, in the concord package, and in the psy package, in several forms.

The following function, which is included for instructional purposes (given that R already has a function
for kappa), also computes the kappa agreement between two vectors of classifications. Suppose we want to
calculate the agreement between LN and GF on Item 2, across 10 interviews. The vector r1 contains the
classifications from LN, which is c(0, 0, 0, 0, 1, 1, 1, 1, 1, 1); and r2 contains GF’s classifications,
c(0, 1, 1, 1, 1, 1, 1, 1, 1, 1). The kappaFor2 function returns the overall κ statistic and the stan-
dard error. The test statistic is based on a z test, and the two-tailed p-value for the null hypothesis that
κ = 0 is also returned.

kappaFor2 <- function(r1, r2, na.method = "na.rm")
{

if (na.method == "na.rm")
na.rm <- T

else na.rm <- F
ttab <- table(r1, r2)
tsum <- sum(ttab, na.rm = na.rm)
#
# change the counts into proportions
#
ttab <- ttab/tsum
#
# find the marginals
#
tm1 <- apply(ttab, 1, sum, na.rm = na.rm)
tm2 <- apply(ttab, 2, sum, na.rm = na.rm)
#

4Guggenmoos-Holzmann, I. (1996). The meaning of kappa: probabilistic concepts of reliability and validity revisited. Journal
of Clinical Epidemiology, 49(7), 775–782.
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agreeP <- sum(diag(ttab), na.rm = na.rm)
chanceP <- sum(tm1 * tm2, na.rm = na.rm)
kappa2 <- (agreeP - chanceP)/(1 - chanceP)
kappaSE <- 1/((1 - chanceP) * sqrt(tsum)) * sqrt(chanceP +
chanceP^2 - sum(tm1 * tm2 * (tm1 + tm2), na.rm = na.rm))

# browser()
kz <- kappa2/kappaSE
kp <- 2 * (1 - pnorm(kz))
ans <- c(kappa2, kappaSE, kz, kp)
names(ans) <- c("kappa", "S.E.", "z.stat", "p.value")
return(ans)

}

Sometimes a function requires further editing. Suppose the kappaFor2 function is entered at R’s system
prompt (i.e., the > character), and there was an error. Then we can type the command kappaFor2 <- emacs(kappaFor2)
to edit its contents with the emacs editor; or use vi() for the visual editor. In the above function there
is a browser() command, commented out by a # character. The browser() command is used to debug
a function. Each time R runs the kappaFor2 function, it stops at the point where a working browser()
command was set, and we can debug the function by examining the variables inside the function.

We run the function kappaFor2 and the results show that the agreement on Item 2 is not reliably greater
than 0, with a two-tail p-value of about 0.20.

> kappaFor2(r1 = c(0, 0, 0, 0, 1, 1, 1, 1, 1, 1),
r2 = c(0, 1, 1, 1, 1, 1, 1, 1, 1, 1))

kappa S.E. z.stat p.value
0.2857143 0.2213133 1.2909944 0.1967056

6.5 Generating random data for testing

Suppose you want to test that the last two formulas yield the same result, but you don’t have any data
handy. You can generate a sample of 10 Likert-type, 5-point scale responses from 100 Ss as follows:

v1 <- matrix(sample(c(1, 2, 3, 4, 5), size=1000, replace=T), ncol=10)

6.6 Within-subject correlations and regressions

Suppose you have a set of 8 items with 2 measures for each, and each subject answers both questions about
each item. You want to find out how the answers to the two questions correlate within each subject, across
the 8 items. Then you want to find the average, across subjects, of these within-subject correlations. The
matrices m1 and m2 contain the data for the questions. Each matrix has 8 columns, corresponding to the 8
items, and one row per subject. The following will do it:

nsub1 <- nrow(m1)
cors1 <- rep(NA,nsub1)
for (i in 1:nsub1) cors1[i] <- cor(m1[i,],m2[i,])

The first line finds the number of subjects, nsub1. The second line creates an vector of nsub1 NA’s to
hold the correlations, one for each subject. The third line fills this vector with the correlations using a loop,
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which uses i to index the subject. Now, if we want to do a t test to see if the correlations are positive, for
example, we can say t.test(cors1).

Similarly, you can store within-subject regressions in a matrix, as in the following example.

# first set up a matrix to hold the results, including the intercept
reg1 <- matrix(NA,4,nsub1) # nsub1 is the number of subjects
for (x in 1:ns) reg1[x] <- lm(y1[x,]~x1[x,]+x2[x,]+x3[x,])$coefficients
t.test(reg1[,1]) # is the mean intercept positive?
t.test(reg1[,2]) # is the mean first coefficient positive?

This works because lm() produces a list, and element coefficients of that list is the coefficients. This
element itself may be decomposed into the intercept, the first coefficient, and so on.

6.7 Linear regression and analysis of variance (anova)

If you want to find whether y1 depends on x1 and x2, the basic thing you need is

lm(y1 ~ x1 + x2)

If these variables are part of a data frame called df1, then you can sayl lm(y1 ~ x1 + x2, data=df1),
or you can say attach(df1) before you run the analysis.

Note that lm() by itself doesn’t do much that is useful. If you want a summary table, one way to get it
is to say

summary(lm(y ~ x1 + x2))

The coefficients are unstandardized. If you want standardized coefficients, use summary(lm(scale(y)
scale(x1) + scale(x2))). The scale() function standardizes vectors by default (and it does many other
things, which you can see from help(scale)).

Another way to get a summary is with anova(). The anova() command is most useful when you want
to compare two models. For example, suppose that you want to ask whether x3 and x4 together account
for additional variance after x1 and x2 are already included in the regression. You cannot tell this from the
summary table that you get from

summary(lm(y1 ~ x1 + x2 + x3 + x4))

That is because you get a test for each coefficient, but not the two together. So, you can do the following
sequence:

model1 <- lm(y1 ~ x1 + x2)
model2 <- lm(y1 ~ x1 + x2 + x3 + x4)
anova(model1,model2)

As you might imagine, this is an extremely flexible mechanism, which allows you to compare two nested
models, one with many predictors not contained in the other. Note that anova reports sums of squares
sequentially, building up by adding the models successively. It is thus different from the usual report of
a multiple regression, summary(lm(...)). Note also that you can add and drop variables from a model
without retyping the model, using the functions add() and drop().
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6.8 Advanced analysis of variance examples

We now turn to repeated-measure analysis of variance using the aov() function in R.5 The aov() function
is used to produce a Univariate ANOVA table similar to the one produced by SAS, SPSS, and Systat. The
SAS syntax of an identical analysis is also listed in example 2 for comparison.67 Sometimes the output of
aov() is different from the output of a GLM procedure in SAS and SPSS. This may seem confusing for
someone who is more familiar with SAS and SPSS than with R. We will use example 1 below to show how
this can happen and what we can do to find a suitable alternative solution. We may need to use a linear
mixed-effects models approach using lme() instead of repeated-measures ANOVA using aov().

6.8.1 Example 1: Mixed Models Approach to Within-Subject Factors (Hays, 1988, Table
13.21.2, p. 518)

We use the data in Hays (1988) to describe how to carry out repeated-measures ANOVA with R. The example
is simplified as follows. Suppose a psychologist is asked to conduct a study to help design the control panel
of a machine that delivers medicine by intravenous infusion. The main purpose of the study is to find the
best shape and color of the buttons on the control panel to improve efficiency and prevent potential errors.
The psychologist wants to know how quickly users (physicians) respond to buttons of different colors and
shapes. Suppose that the psychologist hypothesizes that bright colors are easier to see than dark colors so
the users respond to them faster. In addition, she thinks that users can spot circles faster than squares.
These hypotheses may seem trivial, but they involve the same statistical techniques that can be extended
to more complicated experiments.

The psychologists knows that she will not be able to recruit many physicians to run the test apparatus.
Thus she wants to collect as many test results as possible from each participating physician. Each participant
works with the test apparatus four times, one with round red buttons, one with square red buttons, one
with round gray buttons, and one with square gray buttons. Here the users only try each arrangement once,
but the psychologist could ask them to repeat the tests several times in random order to get a more stable
response time. In that case she would have another effect she may choose to test (repetition, or the effect of
learning).

In psychology, an experimental design like this is often called a “repeated measures” design because each
respondent gives several responses. It is also referred to as a within-subject design because the measurements
are made repeatedly within individual subjects. The variables shape and color are therefore called within-
subject variables. It is possible to do the experiment between subjects. Each data point comes from a
different physician. A completely between-subject experiment is also called a randomized design. However,
the experimenter would need to recruit four times as many physicians, which is not efficient.

This example has 2 within-subject variables and no between subject variables:

• one dependent variable: time required to solve the puzzles

• one random effect: subject (see Hays for reasons why)

5We drop our convention here of using numbers in made-up variable names, in order to be consistent with the original names
in the examples we cite.

6The following examples are inspired by the examples of Gabriel Baud-Bovy, <baudbovy@fpshp1.unige.ch> contributed to
S-News <http://www.stat.cmu.edu/s-news/>, entitled “ANOVAs and MANOVAs for repeated measures (solved examples),”
dated 2/17/1998.

7The statistics theory behind the syntax can be found in the references so detailed explanations are not provided here. The
examples are:
1) Hays, Table 13.21.2, p. 518 (1 dependent variable, 2 independent variables: 0 between, 2 within)
2) Maxwell and Delaney, p. 497 (1 dependent variable, 2 independent variables: 0 between, 2 within)
3) Stevens, Ch. 13.2, p. 442 (1 dependent variable, 1 independent variable: 0 between, 1 within)
4) Stevens, Ch. 13.12, p. 468 (1 dependent variable, 3 independent variables: 1 between, 2 within)
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• 2 within-subject fixed effects: shape (2 levels), color (2 levels)

We first enter the reaction time data into a vector data1. Then we transform data1 into appropriate
format for the repeated analysis of variance using aov().

data1<-c(
49,47,46,47,48,47,41,46,43,47,46,45,
48,46,47,45,49,44,44,45,42,45,45,40,
49,46,47,45,49,45,41,43,44,46,45,40,
45,43,44,45,48,46,40,45,40,45,47,40) # across subjects then conditions

We can take a look at the data in a layout that is easier to read. Each subject takes up a row in the data
matrix.

> matrix(data1, ncol= 4, dimnames =
+ list(paste("subj", 1:12), c("Shape1.Color1", "Shape2.Color1",
+ "Shape1.Color2", "Shape2.Color2")))

Shape1.Color1 Shape2.Color1 Shape1.Color2 Shape2.Color2
subj 1 49 48 49 45
subj 2 47 46 46 43
subj 3 46 47 47 44
subj 4 47 45 45 45
subj 5 48 49 49 48
subj 6 47 44 45 46
subj 7 41 44 41 40
subj 8 46 45 43 45
subj 9 43 42 44 40
subj 10 47 45 46 45
subj 11 46 45 45 47
subj 12 45 40 40 40

Next we use the data.frame() function to create a data frame Hays.df that is appropriate for the aov()
function.

Hays.df <- data.frame(rt = data1,
subj = factor(rep(paste("subj", 1:12, sep=""), 4)),
shape = factor(rep(rep(c("shape1", "shape2"), c(12, 12)), 2)),
color = factor(rep(c("color1", "color2"), c(24, 24))))

The experimenter is interested in knowing if the shape (shape) and the color (color) of the buttons
affect the reaction time (rt). The syntax is:

aov(rt ~ shape * color + Error(subj/(shape * color)), data=Hays.df)

The model formula, rt ~ shape * color + Error(subj/(shape * color)), can be divided into two
parts. The first part, rt ~ shape * color, states that reaction time is affected by the shapes and colors
of the buttons. The asterisk is a shorthand for shape + color + shape:color, representing the shape and
color main effects and the shape by color interaction. The second part, Error(subj/(shape * color)), is
very important for getting the appropriate statistical tests. We will first explain what the syntax means,
then we will explain why we do it this way.
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The Error(subj/(shape * color)) statement is used to separate the residual sums of squares into
several components (called error strata). The statement is equivalent to Error(subj + subj:shape +
subj:color + subj:shape:color), meaning that we want to separate the following error terms: one for
subject, one for subject by shape interaction, one for subject by color interaction, and one for subject by
shape by color interaction.

This syntax generates the appropriate tests for the within-subject variables shape and color. You get

> summary(aov(rt ~ shape * color + Error(subj/(shape*color)), data=Hays.df))

Error: subj
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 11 226.500 20.591

Error: subj:shape
Df Sum Sq Mean Sq F value Pr(>F)

shape 1 12.0000 12.0000 7.5429 0.01901 *
Residuals 11 17.5000 1.5909
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Error: subj:color
Df Sum Sq Mean Sq F value Pr(>F)

color 1 12.0000 12.0000 13.895 0.003338 **
Residuals 11 9.5000 0.8636
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Error: subj:shape:color
Df Sum Sq Mean Sq F value Pr(>F)

shape:color 1 1.200e-27 1.200e-27 4.327e-28 1
Residuals 11 30.5000 2.7727

Note that the shape effect is tested against the residuals of the subject by shape interaction, shown in
the subj:shape error stratum. Similarly, the color effect is tested against subject by color stratum. The
last error stratum with Error: subj:shape:color offers a test of the shape:color interaction.

Random vs. Fixed Effects In this simplified example we have one “random” subject effect (subj)
and two “fixed” experimental manipulations (color and shape). In a repeated-measures design where the
within-subject factors are considered fixed effects and the only random effect comes from subjects, the
within-subject factors are tested against their interaction with the random subject effect. According to Hays
(1988), the appropriate F tests are the following:

F(shape in subj) = MS(shape) / MS(shape : subj) = 7.543

F(color in subj) = MS(color) / MS(color : subj) = 13.895

Without going into the details, we can still understand the distinction between a random and a fixed
effect. Take the fixed shape effect as an example, the psychologist only wants to compare the reaction
time differences between round and square buttons. She is not concerned about generalizing the effect to
buttons of other shapes. In this case the number of possible shapes is fixed to two—round and square. The
reaction time differences between the two conditions do not generalize beyond these two shapes. Similarly,
the variable color is also considered fixed (again the effect not generalizable to colors other than red and
gray).
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When color and shape are both considered fixed, they are tested against the subj:color and subj:shape
mean squares, respectively. The Error() function allows you to do these comparisons. In this example the
only random effect is the subj effect. The 12 subjects reported here belong to a random sample of numerous
other potential users of the device. The study would not be very useful without this generalizability because
the results of the experiments would only apply to these particular 12 test subjects.

Without the Error(subj/(shape * color)) formula, you get the wrong statistical tests. Note that
both color and shape are tested against a common entry called “Residuals”, which is the sum of all the
pieces of residuals in the previous output of Error(subj/(shape * color)), with 11 degrees of freedom in
each of the four error strata.

> summary(aov(rt ~ shape*color, data=hays.df))
Df Sum Sq Mean Sq F value Pr(>F)

shape 1 12.000 12.000 1.8592 0.1797
color 1 12.000 12.000 1.8592 0.1797
shape:color 1 4.399e-29 4.399e-29 6.816e-30 1.0000
Residuals 44 284.000 6.455

Note about Error() What goes inside the Error() statement, and the order in which they are
arranged, are important in ensuring correct statistical tests. Suppose you replaced the asterisk inside
Error(subj/(shape * color)) with a plus sign, you got Error(subj/(shape + color)) instead:

> summary(aov(rt ~ shape * color + Error(subj/(shape + color)),
data=Hays.df))

[identical output as before ... snipped ]

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

shape:color 1 1.185e-27 1.185e-27 4.272e-28 1
Residuals 11 30.5000 2.7727

Note that Error() lumps the shape:color and subj:shape:color sums of squares into a “Within”
error stratum. The “Residuals” in the Within stratum is actually the last piece of sum of square in the
previous output (subj:shape:color). This Error(subj/(shape + color)) syntax gives you the wrong
statistics when you have more than two within-subject variables. We will return to this point later.

There is a subtle detail in the Error(subj/(shape * color)) syntax that is worth noticing. For reasons
that will become clearer in the next section, the forward slash (the / in subj/(shape * color)) tells aov()
that the shape and color of the buttons are actually nested within individual subjects. That is, the changes
in response time due to shape and color should be considered within the subjects.

Unbalanced (Nonorthogonal) Designs We will conclude the first example by introducing a com-
mon complication in repeated-measures ANOVA that involves uneven cell size. In the example above, there
are four possible combinations of shape and color, each containing exactly 12 observations. We call this
design “balanced” because an equal number of observations is found in every combination (or a “cell”) of
the design. A balanced design is also called an “orthogonal” design. In a balanced design, the aov() syntax
above produces exactly the same univariate test statistics as SPSS and SAS. However, often the cell size is
not even, making the design “unbalanced” or “nonorthogonal”. This complication may be due to participant
attrition or a post-hoc grouping factor that was not originally allotted the same number of participants. For
example, the experimenter may stratify the design by gender, that is, by recruiting an equal number of
female and male physicians in the study. But later on the experimental may decide to try analyzing the
reaction time by years of professional experience as the between-subject factor.
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When a design is “unbalanced”, its aov() test statistics may look very different from those obtained
in SPSS and SAS. The reason is because statistical packages like the GLM procedure in SPSS adjusts the
default Type III Sums of Squares by the harmonic mean of the unbalanced cell sizes. The adjustment is
discussed in Maxwell and Delaney (1990, pp. 271-297).

SPSS produces the same output as R if the user tells SPSS to calculate the Type I SS (SSTYPE(1)) or
Type II SS (SSTYPE(2)) instead of the default SSTYPE(3). As shown in Maxwell and Delaney (1990), the
calculations of SS1 and SS2 do not involve the harmonic mean. Maxwell and Delaney discuss the pros and
cons of each type of Sums of Squares. Apparently SPSS and SAS think that the harmonic mean SS3 is the
right analysis. Afterall, the SS3 is in general what a behaivoral scientist seeks. Readers who are interested
in the distinctions between the different types of SS can find a discussion in Maxwell and Delaney (1990).
The example aov() analysis below can be compared with the results of SPSS using SSTYPE(2).

# add one unbalanced between-subject variable
# n=8 in grp 1; 4 in grp 2
Hays.df$grp <- factor(rep(c(1,1,1,1,1,1,1,1,2,2,2,2), 4))
summary(aov(rt ~ grp*color*shape + Error(subj/shape+color), data=Hays.df))

GLM
Sh1Col1 Sh2Col1 Sh1Col2 Sh2Col2 BY grp
/WSFACTOR = color 2 Polynomial shape 2 Polynomial
/METHOD = SSTYPE(2)
/CRITERIA = ALPHA(.05)
/WSDESIGN = color shape color*shape
/DESIGN = grp .

6.8.2 Example 2: Maxwell and Delaney, p. 497

It is the same design as in the previous example, with two within and a subject effect. We repeat the same
R syntax, then we include the SAS GLM syntax for the same analysis. Here we have:

one dependent variable: reaction time

two independent variables: visual stimuli are tilted at 0, 4, and 8 degrees; with noise absent or present.
Each subject responded to 3 tilt x 2 noise = 6 trials.

The data are entered slightly differently; their format is like what you would usually do with SAS, SPSS,
and Systat.

MD497.dat <- matrix(c(
420, 420, 480, 480, 600, 780,
420, 480, 480, 360, 480, 600,
480, 480, 540, 660, 780, 780,
420, 540, 540, 480, 780, 900,
540, 660, 540, 480, 660, 720,
360, 420, 360, 360, 480, 540,
480, 480, 600, 540, 720, 840,
480, 600, 660, 540, 720, 900,
540, 600, 540, 480, 720, 780,
480, 420, 540, 540, 660, 780),
ncol = 6, byrow = T) # byrow=T so the matrix’s layout is exactly like this
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Next we transform the data matrix into a data frame.

MD497.df <- data.frame(
rt = as.vector(MD497.dat),
subj = factor(rep(paste("s", 1:10, sep=""), 6)),
deg = factor(rep(rep(c(0,4,8), c(10, 10, 10)), 2)),
noise = factor(rep(c("no.noise", "noise"), c(30, 30))))

Then we test the main effects and the interaction in one aov() model. The syntax is the same as in the
Hays example:

taov <- aov(rt ~ deg * noise + Error(subj / (deg * noise)), data=MD497.df)
summary(taov)

The results obtained with R can be compared with those obtained using SAS or SPSS. The following SAS
GLM syntax carries out the same univariate analysis, plus some multivariate tests. Maxwell and Delaney
summarized the conditions under which one wants to trust the multivariate results more than the univariate
results. In SAS, each row contains the data from one subject, across 3 degrees of tilt and two levels of noise.
The GLM syntax has a class option where the between-subject factors are listed (if any).

data rt1;
input deg0NA deg4NA deg8NA deg0NP deg4NP deg8NP;
cards;
420 420 480 480 600 780
420 480 480 360 480 600
480 480 540 660 780 780
420 540 540 480 780 900
540 660 540 480 660 720
360 420 360 360 480 540
480 480 600 540 720 840
480 600 660 540 720 900
540 600 540 480 720 780
480 420 540 540 660 780
;

proc glm data=rt1;
model deg0NA deg4NA deg8NA deg0NP deg4NP deg8NP = ;
repeated noise 2 (0 1), degree 3 (0 4 8) / summary ;
run;

6.8.3 Example 3: More Than Two Within-Subject Variables

Earlier we noted that Error(subj/(shape * color)), which uses an asterisk to connect shape and color,
produces detailed breakdown of the variance components. The Error(subj/(shape + color)) statement
prints out what you specifically ask for and lumps the remainder into a “Within” stratum. If you have more
than two within-subject fixed effects, the latter will produce some undesirable side effects.

The next hypothetical example 8 shows that aov(a * b * c + Error(subj/(a+b+c))) does not give
you the appropriate statistical tests for the two-way interactions among factors a, b, and c. The problem is

8contributed by Christophe Pallier
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because Error() lumps everything other than Error: subj:a, Error: subj:b, and Error: subj:c into a
common entry of residuals. The S Model book by Chambers and Hastie contains some technical details that
explains this behavior.

subj <- gl(10, 32, 320) # 10 subjects, each tested 32 times, total length 320
a <- gl(2, 16, 320) # first 16 trials with a1 then next 16 with a2
b <- gl(2, 8, 320) # first 8 triasl with b1, then next 8 with b2, etc.
c <- gl(2, 4, 320)
x <- rnorm(320)
d1 <- data.frame(subj, a, b, c, x)
d2 <- aggregate(x, list(a = a, b = b, c = c, subj = subj), mean)
summary(a1 <- aov(x ~ a * b * c + Error(subj/(a*b*c)), d2))
summary(a2 <- aov(x ~ a * b * c + Error(subj/(a+b+c)), d2))
summary(a3 <- aov(x ~ a * b * c + Error(subj/(a*b*c)), d1))

6.8.4 Example 4: Stevens, 13.2, p.442; a simpler design with only one within variable

data <- c(
30,14,24,38,26,
28,18,20,34,28,
16,10,18,20,14,
34,22,30,44,30)
Stv.df <- data.frame(rt=data,
subj = factor(rep(paste("subj", 1:5, sep=""), 4)),
drug = factor(rep(paste("drug", 1:4, sep=""), c(5,5,5,5))))

We only have one within-subject variable (drug) so that the syntax is simply drug nested within subject.

summary(aov(rt ~ drug + Error(subj/drug), data = Stv.df))

6.8.5 Example 5: Stevens pp. 468 – 474 (one between, two within)

The original data came from Elashoff (1981).9 It is a test of drug treatment effect by one between-subject
factor: group (two groups of 8 subjects each) and two within-subject factors: drug (2 drugs) and dose (3
doses).

Ela.mat <-matrix(c(
19,22,28,16,26,22,
11,19,30,12,18,28,
20,24,24,24,22,29,
21,25,25,15,10,26,
18,24,29,19,26,28,
17,23,28,15,23,22,
20,23,23,26,21,28,
14,20,29,25,29,29,
16,20,24,30,34,36,
26,26,26,24,30,32,

9“Data for the panel session in software for repeated measures analysis of variance.” Proceedings of the Statistical Computing
Section of the American Statistical Association.
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22,27,23,33,36,45,
16,18,29,27,26,34,
19,21,20,22,22,21,
20,25,25,29,29,33,
21,22,23,27,26,35,
17,20,22,23,26,28), nrow = 16, byrow = T)

We first put them in a multivariate format, using the cbind.data.frame() function.

Ela.mul <- cbind.data.frame(subj=1:16, gp=factor(rep(1:2,rep(8,2))), Ela.mat)
dimnames(Ela.mul)[[2]] <-
c("subj","gp","d11","d12","d13","d21","d22","d23") # d12 = drug 1, dose 2

Here is the command for transferring it to the univariate format.

Ela.uni <- data.frame(effect = as.vector(Ela.mat),
subj = factor(paste("s", rep(1:16, 6), sep="")),
gp = factor(paste("gp", rep(rep(c(1, 2), c(8,8)), 6), sep="")),
drug = factor(paste("dr", rep(c(1, 2), c(48, 48)), sep="")),
dose=factor(paste("do", rep(rep(c(1,2,3), rep(16, 3)), 2), sep="")),
row.names = NULL)

The next command performs the correct tests of all effects. We use Error(subj/(dose*drug)) to test
gp, drug, dose and their interactions. Worth noting is that R knows that the gp effect goes with the subject
error stratum, although we did not mention gp in the Error() statement.

summary(aov(effect ~ gp * drug * dose + Error(subj/(dose*drug)), data=Ela.uni))

6.9 Linear Mixed Effects Models

Linear mixed effects models using the nlme() library is another way to analyze repeated-measures ANOVA.
In section 6.8.1, we note the complication of unbalanced designs that cause aov() to produce unexpected
results. The lme() function in the nlme() library is more suitable for unbalanced designs. Using the Hays.df
data above, the lme() syntax is listed below (note the “helmert” contrast instead of the default “treatment”
contrast). Note that the p-values are similar to those obtained from R aov() but are closer to those obtained
in SPSS GLM.

> options(contrasts = c("contr.helmert", "contr.poly"))
> lme1 <- lme(rt ~ grp*color*shape, random = ~ 1 | subj, data=Hays.df)
> summary(lme1)
Linear mixed-effects model fit by REML
Data: Hays.df

AIC BIC logLik
210.0505 226.9392 -95.02523

Random effects:
Formula: ~1 | subj

(Intercept) Residual
StdDev: 2.071131 1.319722



6 STATISTICS 37

Fixed effects: rt ~ grp * color * shape
Value Std.Error DF t-value p-value

(Intercept) 44.68750 0.6655590 30 67.14281 0.0000
grp1 -0.93750 0.6655590 10 -1.40859 0.1893
color1 -0.46875 0.2020404 30 -2.32008 0.0273
shape1 -0.56250 0.2020404 30 -2.78410 0.0092
grp1:color1 0.09375 0.2020404 30 0.46402 0.6460
grp1:shape1 -0.18750 0.2020404 30 -0.92803 0.3608
color1:shape1 0.09375 0.2020404 30 0.46402 0.6460
grp1:color1:shape1 0.28125 0.2020404 30 1.39205 0.1741
Correlation:

(Intr) grp1 color1 shape1 grp1:c1 grp1:s1 clr1:1
grp1 0.333
color1 0.000 0.000
shape1 0.000 0.000 0.000
grp1:color1 0.000 0.000 0.333 0.000
grp1:shape1 0.000 0.000 0.000 0.333 0.000
color1:shape1 0.000 0.000 0.000 0.000 0.000 0.000
grp1:color1:shape1 0.000 0.000 0.000 0.000 0.000 0.000 0.333

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-1.4294819 -0.6443506 0.1128209 0.5595731 1.6551236

Number of Observations: 48
Number of Groups: 12

Here is another example that uses lme() to analyze an ANOVA with a nested random effect (p. 439,
Maxwell & Delaney, 1990). A director of a psychiatry clinic wants to know if there is a gender difference in
how psychologist trainees make intake assessments. The director randomly selects six psychologists trainees,
3 males and 3 females. Each trainee administers intake interviews to n = 4 psychiatric patients, and rates
the patients’ general severity (higher rating is more severe). The effects to be tested are trainee (random)
and sex (fixed) effects. Here trainee is nested within sex.

> library(nlme)
> rating <- c(49, 40, 31, 40, 42, 48, 52, 58, 42, 46, 50, 54, 54,

60, 64, 70, 44, 54, 54, 64, 57, 62, 66, 71)
> sex <- factor(c(rep("M", 12), rep("F", 12)))
> trainee <- factor(paste("tr", rep(1:6, each = 4), sep = ""))
> nested1.df <- groupedData(rating ~ sex | sex/trainee)
>
> lme1 <- lme(rating ~ sex, random = ~ 1 | trainee)
> summary(lme1)
Linear mixed-effects model fit by REML
Data: NULL

AIC BIC logLik
163.0179 167.3821 -77.50895

Random effects:
Formula: ~1 | trainee

(Intercept) Residual
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StdDev: 4.075667 6.749487

Fixed effects: rating ~ sex
Value Std.Error DF t-value p-value

(Intercept) 60 3.055048 18 19.639627 0.0000
sexM -14 4.320490 4 -3.240373 0.0317
Correlation:

(Intr)
sexM -0.707

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-1.8431744 -0.4632926 -0.1155287 0.6459929 1.4263288

Number of Observations: 24
Number of Groups: 6

Women psychologists trainees gave significantly higher ratings to patients than men. Because this is a bal-
anced design, the square of the t-statistic is equal to the F = 10.5 statistic derived by Maxwell & Delaney
(1990, p. 440). The test for the trainee effect, however, is not directly available in lme(). But it can be de-
rived from the Random effects: output. The F ratio for the trainee effect is MS(sex/trainee)/MS(within).
According to Maxwell & Delaney (p. 437, Table 10.4), MS(sex/trainee) = Error(within) + n * Error(trainee)
6.75^2 + 4 * 4.076^2 = 112; and MS(within) is just the Residual squared = 6.75^2 = 45.56. Thus F
= 2.45, which is not statistically significant.

The same analysis can be carried out with the lmer() function in the lme4 library.

> library(lme4) # generalized linear mixed-effects models by Bates
Loading required package: Matrix
Loading required package: lattice
> lmer(rating ~ sex + (1 | trainee), data = nested1.df)
Linear mixed-effects model fit by REML
Formula: rating ~ sex + (1 | trainee)

Data: nested1.df
AIC BIC logLik MLdeviance REMLdeviance

161.0 164.6 -77.51 163.1 155.0
Random effects:
Groups Name Variance Std.Dev.
trainee (Intercept) 16.611 4.0756
Residual 45.556 6.7495

number of obs: 24, groups: trainee, 6

Fixed effects:
Estimate Std. Error t value

(Intercept) 60.000 3.055 19.64
sexM -14.000 4.320 -3.24

Correlation of Fixed Effects:
(Intr)

sexM -0.707
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One of the coauthors of the nlme library, Douglas Bates, gave reasons why lmer() and lme() do not
routinely print out F tests for random effects (https://stat.ethz.ch/pipermail/r-help/2006-May/094765.html,
last accessed December, 2006). They can nevertheless be derived if necessary (and appropriate).

This kind of nested design is common. Patients can be treated by different therapists (random) who
are nested within different psychotherapy methods (fixed or random, depending on the research question).
Therapists can be nested within sites (almost always random). aov() and Error() do not always generate
the most appropriate statistical tests.

Often these random effects are treated as fixed. This problem was first identified by Clark (1973) (if not
the first, one of the first). In his “language-as-fixed-effect fallacy” paper, Clark showed that many studies
in linguistics had a mistake in treating the effect associated with words as a fixed effect. When the stimuli
you present to your subjects are a random sample of numerous other possible stimuli, the word effect should
be treated as a random effect. Many statistically significant findings disappeared when Clark treated them
appropriately as random effects.

Finally, linear mixed effects models are the preferred methods to analyze longitudinal data, especially
when the repeated measurements are made over staggered assessments (at uneven time intervals). In health
psychology, often assessments are made at baseline (e.g., before treatment), then again at 3 and 12 months
post treatment completion. Assessments made at baseline and 3 months post treatment completion are likely
to be highly correlated as compared to assessments made between 3 and 12 months.

6.9.1 Other Useful Functions for ANOVA

As we discussed earlier, we can use the tapply() function to calculate the means across various conditions.
We can think of it as using one statement to run the mean() function 12 times! The output matrix is very
useful for plotting.

tapply(Ela.uni$effect, IND = list(Ela.uni$gp, Ela.uni$drug, Ela.uni$dose),
FUN = mean)

We can also easily custom design a function se() to calculate the standard error for the means. R does
not have a built-in function for that purpose, but there is really no need because the standard error is just
the square root (R has the sqrt() function) of the variance (var()), divided by the number of observations
(length()). We can use one line of tapply() to get all standard errors. The se() makes it easy to find the
confidence intervals for those means. Later we will demonstrate how to use the means and standard errors
we got from tapply() to plot the data.

se <- function(x)
{

y <- x[!is.na(x)] # remove the missing values
sqrt(var(as.vector(y))/length(y))

}

In R, we not only can use the built-in functions such as aov() to do the analyses, we can also take
advantage of R’s flexibility and do many analyses by hand. The following examples demonstrate that some
of the ANOVA tests we did earlier with the aov() function can also be done manually with contrasts.

1. We can use the following contrast to test the group effect. On the left hand side of the aov() model,
we use matrix multiplication (%*%) to apply the contrast (contr) to each person’s 6 data points. As a
result, each person’s 6 data points become one number that is actually the person’s total score summed
across all conditions. The matrix multiplication is the same as doing 1 * d11 + 1 * d12 + 1 * d13
+ 1 * d21 + 1 * d22 + 1 * d23 for each person.
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Then we use the aov() function to compare the total scores across the two groups. We can verify
that in this output the F statistic for the gp marginal effect is exactly the same as the one in the the
previous aov(... Error()) output, although the sums of squares are different because the contrast
is not scaled to length 1.

contr <- matrix(c(
1,
1,
1,
1,
1,
1), ncol = 1)

taov <- aov(cbind(d11,d12,d13,d21,d22,d23) %*% contr ~ gp, data = Ela.mul)
summary(taov, intercept = T)

2. The following contrast, when combined with the aov() function, will test the drug main effect and
drug:group interaction. The contrast c(1, 1, 1, -1, -1, -1) applies positive 1’s to columns 1:3 and
negative 1’s to columns 4:6. Columns 1:3 contain the data for drug 1 and 4:6 for drug 2, respectively.
So the contrast and the matrix multiplication generates a difference score between drugs 1 and 2. When
we use aov() to compare this difference among two groups, we actually test the drug:gp interaction.

contr <- matrix(c(
1,
1,
1,

-1,
-1,
-1), ncol = 1)

tmp<-aov(cbind(d11,d12,d13,d21,d22,d23) %*% contr ~ gp, Ela.mul)
summary(tmp,intercept= T)

3. The next contrast, when combined with the manova() function in R-1.2.0 or later, tests the dose
main effect and the dose:group interaction. The first contrast c(1, 0, -1, 1, 0, -1) tests if the
difference between dose 1 and dose 3 are statistically significant across groups; and the second contrast
c(0, 1, -1, 0, 1, -1) tests the difference between dose 2 and dose 3 across two groups. When
tested simultaneously with manova(), we get

contr <- matrix(c(
1, 0,
0, 1,

-1,-1,
1, 0,
0, 1,

-1,-1), nrow = 6, byrow = T)

tmp <- manova(cbind(d11,d12,d13,d21,d22,d23) %*% contr ~ gp, Ela.mul)
summary(tmp, test="Wilks", intercept = T)

4. Another manova() contrast, which tests drug:dose interaction and drug:dose:group interaction.
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contr <- matrix(c(
1,-1,
0, 2,

-1,-1,
-1, 1,
0,-2,
1, 1), nrow = 6, byrow = T)

tmp<-manova(cbind(d11,d12,d13,d21,d22,d23) %*% contr ~ gp, Ela.mul)
summary(tmp, test="Wilks", intercept = T)

6.9.2 Graphics with error bars

Next we will demonstrate how to use R’s powerful graphics functions to add error bars to a plot. The example
uses the Elashoff example discussed earlier. In this example we will briefly show how visual representations
compliment the statistical tests. We use R’s jpg() graphics driver to generate a graph that can be viewed by
a web browser. The command syntax may appear intimidating for beginners, but it is worth the increased
efficiency in the long run.

You can also use the postscript() graphics driver to generate presentation-quality plots. PostScript
files can be transformed into PDF format so that nowadays the graphs generated by R can be viewed and
printed by virtually anyone.10

Typically the graphs are first generated interactively with drivers like X11(), then the commands are
saved and edited into a script file. A command syntax script eliminates the need to save bulky graphic files.

First we start the graphics driver jpg() and name the file where the graph(s) will be saved.

attach(Ela.uni)
jpeg(file = "ElasBar.jpg")

Then we find the means, the standard errors, and the 95% confidence bounds of the means.

tmean <- tapply(effect, IND = list(gp, drug, dose), mean)
tse <- tapply(effect, IND = list(gp, drug, dose), se)
tbarHeight <- matrix(tmean, ncol=3)
dimnames(tbarHeight) <- list(c("gp1dr1","gp2dr1","gp1dr2","gp2dr2"),

c("dose1","dose2" ,"dose3"))
tn <- tapply(effect, IND = list(gp, drug, dose), length)
tu <- tmean + qt(.975, df=tn-1) * tse # upper bound of 95% confidence int.
tl <- tmean + qt(.025, df=tn-1) * tse # lower bound
tcol <- c("blue", "darkblue", "yellow", "orange") # color of the bars

After all the numbers are computed, we start building the barplot. First we plot the bars without the
confidence intervals, axes, labels, and tick marks. Note that the barplot() function returns the x-axis values
at where the center of the bars are plotted. Later we will use the values in tbars to add additional pieces.

tbars <- barplot(height=tbarHeight, beside=T, space=c(0, 0.5),
ylab="", xlab="", axes=F, names.arg=NULL, ylim=c(-15, 40),
col=tcol)

10One converter is ps2pdf, or try GhostScript.
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Then we add the 95% confidence intervals of the means to the bars.

segments(x0=tbars, x1=tbars, y0=tl, y1=tu)
segments(x0=tbars-.1, x1=tbars+0.1, y0=tl, y1=tl) # lower whiskers
segments(x0=tbars-.1, x1=tbars+0.1, y0=tu, y1=tu) # upper whiskers

The axes labels are added.

axis(2, at = seq(0, 40, by=10), labels = rep("", 5), las=1)
tx <- apply(tbars, 2, mean) # center positions for 3 clusters of bars

We plot the horizontal axis manually so that we can ask R to put things at exactly where we want them.

segments(x0=0, x1=max(tbars)+1.0, y0=0, y1=0, lty=1, lwd = 2)
text(c("Dose 1", "Dose 2", "Dose 3"), x = tx, y = -1.5, cex =1.5)
mtext(text=seq(0,40,by=10), side = 2, at = seq(0,40,by=10),

line = 1.5, cex =1.5, las=1)
mtext(text="Drug Effectiveness", side = 2, line = 2.5, at = 20, cex =1.8)

Finally we want to plot the legend of the graph manually. R also has a legend() function, although less
flexible.

tx1 <- c(0, 1, 1, 0)
ty1 <- c(-15, -15, -13, -13)
polygon(x=tx1, y=ty1, col=tcol[1])
polygon(x=tx1, y=ty1 + 2.5, col=tcol[2]) # 2nd, moved 2.5 points up
polygon(x=tx1, y=ty1 + 5, col=tcol[3]) # 3rd
polygon(x=tx1, y=ty1 + 7.5, col=tcol[4]) # last

Finally, we add the legend labels for the filled rectangles.

text(x = 2.0, y = -14, labels="group 1, drug 1", cex = 1.5, adj = 0)
text(x = 2.0, y = -11.5, labels="group 2, drug 1", cex = 1.5, adj = 0)
text(x = 2.0, y = -9, labels="group 1, drug 2", cex = 1.5, adj = 0)
text(x = 2.0, y = -6.5, labels="group 2, drug 2", cex = 1.5, adj = 0)

The greatest effectiveness is attained by subjects in group 2 when drug 2 is given. This suggests a group
by drug interaction, which is confirmed by the aov() results outlined earlier. It also indicates an increasing
effectiveness from dose 1 to 3, which is also confirmed by the statistics.

6.9.3 Another way to do error bars using plotCI()

The gplots library has a function plotCI(), which does confidence intervals for plots. Here is an example,
which is Figure 1 in http://journal.sjdm.org/06137/jdm06137.htm. Note the use of a small horizontal
offset (−.01) so that the error bars do not overlap. The font “NimbusSan” is supposed to fit well with Times
Roman.

library("gplots")
m.pg <- c(-2.6400, 3.6000, 6.0000, 3.6800, 5.4400)
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se.pg <- c(1.71938, 1.86548, 1.74738, 1.94484, 1.83492)
m.pl <- c(-4.9600, -3.7600, -2.3200, -.1600, 6.5600)
se.pl <- c(1.47024, 1.72170, 1.79139, 1.36587, 1.56852)

postscript(file="fig1.eps",family="NimbusSan",
width=8,height=8,horiz=F,pointsize=18,paper="special")

plotCI(y=c(m.pg,m.pl),x=c(c(1:5)-.01,c(1:5)+.01),uiw=c(se.pg,se.pl),
ylim=c(-6,8),ylab="Net IGT score",xlab="Block",lty=rep(c(1,2),c(5,5)))

lines(y=m.pg,x=c(1:5)-.01,lty=1)
lines(y=m.pl,x=c(1:5)+.01,lty=2)
legend(3.6,-3.7,legend=c("Prior gain","Prior loss"),lty=c(1,2))
dev.off()

6.10 Use Error() for repeated-measure ANOVA

In this section we give an intuitive explanation to the use of the Error() statement for repeated-measure
analysis of variance. These explanations are different than what are typically covered in advanced textbooks.
The conventional method focuses on deriving the appropriate error terms for specific statistical tests. We
use an intuitive method, which will show that using Error() inside an aov() function is actually the same
as performing t-tests using contrasts.

The conventional explanation is computationally and theoretically equivalent to what we are about to
summarize. Detailed theoretical explanations can be found in most advanced textbooks, including the book
by Hoaglin, Mosteller, and Tukey (1991). Explanations of the technical details can be found in the book by
Chambers and Hastie (1992).

We first review Analysis of Variance using a method commonly seen in most introductory textbooks.
This method uses an ANOVA table to describes how much of the total variability is accounted for by all the
related variables. An ANOVA table is exactly what aov() does for you. We first apply this method to the
Hays.df data described earlier (but repeated here), then we use the ANOVA table to explain why we must
add the Error() statement in an aov() command in order to get the appropriate significance tests. Finally
we draw a connection between Error() and specific t-tests tailored for repeated-measure data.

6.10.1 Basic ANOVA table with aov()

The aov() function generates a basic ANOVA table if Error() is not inserted. Applying a simple aov() to
the Hays.df data, you get an ANOVA table like the following:

summary(aov(rt ~ subj * color * shape, data = Hays.df))
Df Sum Sq Mean Sq

subj 11 226.500 20.591
color 1 12.000 12.000
shape 1 12.000 12.000
subj:color 11 9.500 0.864
subj:shape 11 17.500 1.591
color:shape 1 1.493e-27 1.493e-27
subj:color:shape 11 30.500 2.773

R analyzes how reaction time differs depending on the subjects, color and the shape of the stimuli. Also,
you can have R tell you how they interact with one another. A simple plot of the data may suggest an
interaction between color and shape. A color:shape interaction occurs if, for example, the color yellow is
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easier to recognize than red when it comes in a particular shape. The subjects may recognize yellow squares
much faster than any other color and shape combinations. Therefore the effect of color on reaction time is
not the same for all shapes. We call this an interaction.

The above aov() statement divides the total sum of squares in the reaction time into pieces. By looking
at the size of the sums of squares (Sum Sq in the table), you can get a rough idea that there is a lot of
variability among subjects and negligible in the color:shape interaction.

So we are pretty sure that the effect of color does not depend on what shape it is. The sum of square
for color:shape is negligible. Additionally, the subj variable has very high variability, although this is not
very interesting because this happens all the time. We always know for sure that some subjects respond
faster than others.

Obviously we want to know if different colors or shapes make a difference in the response time. One
might naturally think that we do not need the subj variable in the aov() statement. Unfortunately doing
so in a repeated design can cause misleading results:

summary(aov(rt ~ color * shape, data = Hays.df))
Df Sum Sq Mean Sq F value Pr(>F)

color 1 12.000 12.000 1.8592 0.1797
shape 1 12.000 12.000 1.8592 0.1797
color:shape 1 1.246e-27 1.246e-27 1.931e-28 1.0000
Residuals 44 284.000 6.455

This output can easily deceive you into thinking that there is nothing statistically significant! This is
where Error() is needed to give you the appropriate test statistics.

6.10.2 Using Error() within aov()

It is important to remember that summary() generates incorrect results if you give it the wrong model. Note
that in the statement above the summary() function automatically compares each sum of square with the
residual sum of square and prints out the F statistics accordingly. In addition, because the aov() function
does not contain the subj variable, aov() lumps every sum of squares related to the subj variable into this
big Residuals sum of squares. You can verify this by adding up those entries in our basic ANOVA table
(226.5 + 9.5 + 17.5 + 1.49E − 27 + 30 = 284).

R does not complain about the above syntax, which assumes that you want to test each effect against the
sum of residual errors related to the subjects. This leads to incorrect F statistics. The residual error related
to the subjects is not the correct error term for all. Next we will explain how to find the correct error terms
using the Error() statement. We will then use a simple t-test to show you why we want to do that.

6.10.3 The Appropriate Error Terms

In a repeated-measure design like that in Hays, the appropriate error term for the color effect is the
subj:color sum of squares. Also the error term for the other within-subject, shape effect is the subj:shape
sum of squares. The error term for the color:shape interaction is then the subj:color:shape sum of
squares. A general discussion can be found in Hoaglin’s book. In the next section we will examine in some
detail the test of the color effect.

For now we will focus on the appropriate analyses using Error(). We must add an Error(subj/(shape
+ color)) statement within aov(). This repeats an earlier analysis.

summary(aov(rt ~ color * shape + Error(subj/(color + shape)), data = Hays.df))
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Error: subj
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 11 226.500 20.591

Error: subj:color
Df Sum Sq Mean Sq F value Pr(>F)

color 1 12.0000 12.0000 13.895 0.003338 **
Residuals 11 9.5000 0.8636
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Error: subj:shape
Df Sum Sq Mean Sq F value Pr(>F)

shape 1 12.0000 12.0000 7.5429 0.01901 *
Residuals 11 17.5000 1.5909
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

color:shape 1 1.139e-27 1.139e-27 4.108e-28 1
Residuals 11 30.5000 2.7727

As we mentioned before, the Error(subj/(color * shape)) statement is the short hand for dividing
all the residual sums of squares—in this case all subject-related sums of squares—into three error strata.

The Error() statement says that we want three error terms separated in the ANOVA table: one for
subj, subj:color, and subj:shape, respectively. The summary() and aov() functions are smart enough
to do the rest for you. The effects are arranged according to where they belong. In the output the color
effect is tested against the correct error term subj:color, etc. If you add up all the Residuals entries in
the table, you will find that it is exactly 284, the sum of all subject-related sums of squares.

6.10.4 Sources of the Appropriate Error Terms

In this section we use simple examples of t-tests to demonstrate the need of the appropriate error terms.
Rigorous explanations can be found in Edwards (1985) and Hoaglin, Mosteller, and Tukey (1991). We will
demonstrate that the appropriate error term for an effect in a repeated ANOVA is exactly identical to the
standard error in a t statistic for testing the same effect.

Let’s use the data in Hays (1988), which we show here again as hays.mat (See earlier example for how
to read in the data).

hays.mat
Shape1.Color1 Shape2.Color1 Shape1.Color2 Shape2.Color2

subj 1 49 48 49 45
subj 2 47 46 46 43
subj 3 46 47 47 44
subj 4 47 45 45 45
subj 5 48 49 49 48
subj 6 47 44 45 46
subj 7 41 44 41 40
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subj 8 46 45 43 45
subj 9 43 42 44 40
subj 10 47 45 46 45
subj 11 46 45 45 47
subj 12 45 40 40 40

In a repeated-measure experiment the four measurements of reaction time are correlated by design because
they are from the same subject. A subject who responds quickly in one condition is likely to respond quickly
in other conditions as well.

To take into consideration these differences, the comparisons of reaction time should be tested with
differences across conditions. When we take the differences, we use each subject as his/her own control. So
the difference in reaction time has the subject’s baseline speed subtracted out. In the hays.mat data we test
the color effect by a simple t-test comparing the differences between the columns of “Color1” and “Color2.”

Using the t.test() function, this is done by

t.test(x = hays.mat[, 1] + hays.mat[, 2], y = hays.mat[, 3] + hays.mat[, 4],
+ paired = T)

Paired t-test

data: hays.mat[, 1] + hays.mat[, 2] and hays.mat[, 3] + hays.mat[, 4]
t = 3.7276, df = 11, p-value = 0.003338
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.819076 3.180924

sample estimates:
mean of the differences

2

An alternative is to test if a contrast is equal to zero, we talked about this in earlier sections:

t.test(hays.mat %*% c(1, 1, -1, -1))

One Sample t-test

data: hays.mat %*% c(1, 1, -1, -1)
t = 3.7276, df = 11, p-value = 0.003338
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.819076 3.180924

sample estimates:
mean of x

2

This c(1, 1, -1, -1) contrast is identical to the first t-test. The matrix multiplication (the %*%
operand) takes care of the arithmetic. It multiplies the first column by a constant 1, add column 2, then
subtract from that columns 3 and 4. This tests the color effect. Note that the p-value of this t test is the
same as the p-values for the first t test and the earlier F test.

It can be proven algebraically that the square of a t-statistic is identical to the F test for the same
effect. So this fact can be used to double check the results. The square of our t-statistic for color is
3.72762 = 13.895, which is identical to the F statistic for color.
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Now we are ready to draw the connection between a t-statistic for the contrast and the F-statistic in an
ANOVA table for repeated-measure aov(). The t statistic is a ratio between the effect size to be tested
and the standard error of that effect. The larger the ratio, the stronger the effect size. The formula can be
described as follows:

t =
x̄1 − x̄2

s/
√

n
, (1)

where the numerator is the observed differences and the denominator can be interpreted as the expected
differences due to chance. If the actual difference is substantially larger than what you would expect, then
you tend to think that the difference is not due to random chance.

Similarly, an F test contrasts the observed variability with the expected variability. In a repeated design
we must find an appropriate denominator by adding the the Error() statement inside an aov() function.

The next two commands show that the error sum of squares of the contrast is exactly identical to the
Residual sum of squares for the subj:color error stratum.

tvec <- hays.mat %*% c(1, 1, -1, -1)/2
sum((tvec - mean(tvec))^2)
[1] 9.5

The sum of squares of the contrast is exactly 9.5, identical to the residual sum of squares for the correct
F test. The scaling factor 1/2 is critical because it provides correct scaling for the numbers. By definition a
statistical contrast should have a vector length of 1. This is done by dividing each element of the contrast
vector by 2, turning it to c(1/2, 1/2, -1/2, -1/2). The scaling does not affect the t-statistics. But it
becomes important when we draw a connection between a t-test and an F test.

You get the standard error of the t-statistic if you do the following:

sqrt(sum((tvec - mean(tvec))^2 / 11) / 12)
[1] 0.2682717

The first division of 11 is for calculating the variance; then you divide the variance by the sample size of
12, take the square root, you have the standard error for the t-test. You can verify it by running se(hays.mat
%*% c(1, 1, -1, -1)/2).

6.10.5 Verify the Calculations Manually

All the above calculations by aov() can be verified manually. This section summarizes some of the technical
details. This also gives you a flavor of how Analysis Of Variance can be done by matrix algebra. First we
re-arrange the raw data into a three-dimensional array. Each element of the array is one data point, and the
three dimensions are for the subject, the shape, and the color, respectively.

hays.A <- array(hays.dat, dim=c(12, 2, 2))
dimnames(hays.A) <- list(paste("subj", 1:12, sep = ""),
+ c("Shape1", "Shape2"), c("Color1", "Color2"))

Because at this point we want to solve for the effect of color, we use the apply() function to average
the reaction time over the two shapes.

Ss.color <- apply(hays.A, c(1, 3), mean) # Ss x color: average across shape
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Next we test a t-test contrast for the color effect, which is the same as t.test(Ss.color %*% c(1, -1)).
Also note that the square of the t statistic is exactly the same as the F test.

Contr <- c(1, -1)
Ss.color.Contr <- Ss.color %*% Contr
mean(Ss.color.Contr) / (sqrt(var(Ss.color.Contr) / length(Ss.color.Contr)))

[,1]
[1,] 3.727564

The above t-test compares the mean of the contrast against the standard error of the contrast, which is
sqrt(var(Ss.color.Contr) / length(Ss.color.Contr))

Now we can verify that the sum of square of the contrast is exactly the same as the error term when we
use aov() with the Error(subj:color) stratum.

sum((Ss.color.Contr - mean(Ss.color.Contr))^2)
[1] 9.5

6.11 Sphericity

Sphericity is an assumption of repeated measure ANOVA. It means that the variance-covariance structure of
the repeated measure ANOVA follows a certain pattern. In a repeated measure design, several measurements
are made to the same groups of subjects under different conditions (and/or at different time). Sphericity is,
in a nutshell, that the variances of the differences between the repeated measurements should be about the
same. This is a complicated concept best explained with examples. Simple examples tend to oversimplify
things, because they often rely on idealized hypothetical data that rarely occur in real life. Although their
usefulness in relieving the burden of learning overcompensates for the over-simplification. In what follows
the example in section (cite the previous section???) is used again to explain what sphericity is, how to
calculate and test it, and what alternative statistics can be used if the sphericity assumption is not met.

6.11.1 Why is sphericity important?

Violations of the sphericity assumption lead to biased p-values. The alpha error of a test may be set at
5%, but the test may be actually rejecting the null hypothesis 10% of the time. This raises doubts of the
conclusions of the repeated measure ANOVA. Imagine a study about weight gains of new born babies at
the Intensive Care Unit. The weight of the babies is measured every day for a critical period of three days.
On the average the babies gain 100 grams between days 1 and 2, and they gain 150 grams between days
2 and 3. Sphericity says that the variance of the weight gain between days 1 and 2 should be about the
same as the variance of the weight gain between days 2 and 3 (and also between days 1 and 3). If not, the
variance observed between different time periods are confounded with the correlation of the measurements
made at different time. Suppose the variance of the first weight gain is 20 and the variance of the second
weight gain is 100, then the measurements made at times 1 and 2 are likely to be correlated more closely
than measurements made at times 2 and 3. As a result the variance over the whole 3-day period (what is
often called the variance of the “time” effect in ANOVA jargon) fluctuates over time and is not reliable in
describing the overall growth pattern in critically ill babies.

In repeated measure experiments the same subjects are tested multiple times under different conditions.
It is a good idea to check if the responses made under some conditions are correlated more closely than
responses made under other conditions.

There is a statistic, The Greenhouse-Geisser epsilon ε, which measures by how much the sphericity
assumption is violated. Epsilon is then used to adjust for the potential bias in the F statistic. Epsilon can
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be 1, which means that the sphericity assumption is met perfectly. An epsilon smaller than 1 means that the
sphericity assumption is violated. The further it deviates from 1, the worse the violation. In real life epsilon
is rarely exactly 1. If it is not much smaller than 1, then we feel comfortable with the results of repeated
measure ANOVA. Thus the question is how small is too small. We will get to that below. Additionally, we
will talk about two remedies when sphericity is violated: 1) correct for the p-value, and 2) use procedures
that do not depend on sphericity, such as MANOVA.

6.11.2 How to estimate the Greenhouse-Geisser epsilon?

The Greenhouse-Geisser epsilon is derived from the variance-covariance matrix of the data. The MD497.dat
example above involves a study where study subjects judged stimuli under 3 different angles of rotation, at
0, 2, and 4 degrees angle from the horizontal. In this subsection we estimate the Greenhouse-Geisser epsilon
associated with the rotation of the stimuli. The 3 measurements of reaction time are stored in x0, x2, and
x4, respectively.

x0 <- apply(MD497.dat[, c(1, 4)], 1, mean) # avg across noise present/absent
x2 <- apply(MD497.dat[, c(2, 5)], 1, mean)
x4 <- apply(MD497.dat[, c(3, 6)], 1, mean)

We need to first calculate the variance-covariance matrix of the 3 variables. The var() function calculates
the variance-covariance matrix if the data are arranged in a matrix, like S <- var(cbind(x0, x2, x4)):

> var(cbind(x0, x2, x4))
x0 x2 x4

x0 4090 3950 4350
x2 3950 6850 6150
x4 4350 6150 8850

The diagonal entries are the variances and the off diagonal entries are the covariances. From this variance-
covariance matrix the ε statistic can be estimated:

ε̂ =
k2(s̄ii − s̄)2

(k − 1)(
∑∑

s2
ij − 2k

∑
s̄2

i. + k2s̄2)
,

where s̄ii is the mean of the entries on the main diagonal of S, which can be shown by mean(diag(S)) to
equal 6596.667; s̄ is the mean of all entries, s̄i. is the mean of all entries in row i of S, and sij is the 9
individual entries in the variance-covariance matrix.

S <- var(cbind(x0, x2, x4))
k <- 3; D < - k^2 * ( mean ( diag ( S ) ) - mean ( S ) ) ^2
N1 <- sum(S^2)
N2 <- 2 * k * sum(apply(S, 1, mean)^2)
N3 <- k^2 * mean(S)^2
D / ((k - 1) * (N1 - N2 + N3))

Which returns [1] 0.9616365 for the value of ε̂. This value rounds to the 0.9616 value calculated by SAS
(the SAS GLM syntax is provided above).

There are three important values of ε. It can be 1 when the sphericity is met perfectly. It can be as
low as ε = 1/(k − 1), which produces the lower bound of epsilon (the worst case scenario). The worst case
scenario depends on k, the number of levels in the repeated measure factor. In this example k = 3. Each
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subject is tested under 3 different levels of stimuli rotation. Epsilon can be as low as 0.50 when k = 3. Note
that the sphericity assumption does not apply when k = 2. Another way to view it is that even the lowest
epsilon is 1. Thus a repeated measure design with only 2 levels does not involve violations of the sphericity
assumption.

Adjustment of the F statistic can be made against either the estimated epsilon, in this case ε̂ = 0.962;
or against the worst case epsilon of 0.50. It depends on how conservative one wants to be. If the cost of
falsely rejecting the null hypothesis is high, then one may want to adjust against the worst possible (and
very conservative) epsilon. Both SPSS and SAS use the estimated value to make the Greenhouse-Geisser
adjustment. The Greenhouse-Geisser adjustment made by SPSS and SAS is different from the adjustment
originally proposed by Greenhouse and Geisser (1959). Although the adjustment made by SPSS and SAS is
considered more reasonable (Stevens, 1990).

The estimated epsilon is used to adjust the degrees of freedom associated with the F statistic from the
unadjusted (k − 1) and (k − 1)(n − 1) to ε(k − 1) and ε(k − 1)(n − 1). Severe violations of the sphericity
assumption (as ε̂ → 0) may decrease the degrees of freedom so much that the F statistic is no longer
statistically significant. The p-value associated with the adjusted F can be obtained from the pf() function.

¿From the previous aov() output we get an F statistic of 40.719 for the variable deg. The numerator
degree of freedom is (k−1) = 2 and the denominator degrees of freedom is (k−1)(n−1) = (3−1)(10−1) = 18.
These can be verified with the output of the previous analysis. Suppose the value of epsilon is assigned to
epsi <- D / ((k - 1) * (N1 - N2 + N3)). We can then use epsi to weigh down the degrees of freedom.

> 2 * (1 - pf(40.719, df1=2*epsi, df2=18*epsi))
[1] 6.80353e-07

The F statistic is still statistically significant below the 0.0001 level. The negligible violation of the
sphericity assumption does not affect the conclusion we make.

Huynh-Feldt correction. The Greenhouse-Geisser epsilon tends to underestimate epsilon when epsilon
is greater than 0.70 (Stevens, 1990). An estimated ε = 0.96 may be actually 1. Huynh-Feldt correction is
less conservative. The Huynh-Feldt epsilon is calculated from the Greenhouse-Geisser epsilon,

ε̄ =
n(k − 1) ε̂− 2

(k − 1)[ (n− 1)− (k − 1) ε̂ ]
.

The Huynh-Feldt epsilon can be easily calculated:

> epsiHF <- (10 * (k-1) * epsi - 2) / ((k-1) * ((10-1) - (k-1)*epsi))
[1] 1.217564
> 2 * (1 - pf(40.719, df1=2*epsiHF, df2=18*epsiHF))
[1] 2.633106e-08

The Huynh-Feldt epsilon is 1.2176 with an adjusted p-value lower than 0.0001. Again, the Huynh-Feldt
correction does not change the conclusion. In this example, the univariate results are preferred because an
ε = 0.96 is very close to 1.0. The sphericity corrections do not change the conclusions. MANOVA (and
multivariate tests) may be better if the Greenhouse-Geisser and the Huynh-Feldt corrections do not agree,
which may happen when epsilon drops below 0.70. When epsilon drops below 0.40, both the G-G and H-F
corrections may indicate that the violation of sphericity is affecting the adjusted p-values. MANOVA is not
always appropriate, though. MANOVA usually requires a larger sample size. Maxwell and Delaney (1990,
p. 602) suggest a rough rule of thumb that the sample size n should be greater than k + 10. In the present
example the sample size n is 10, which is smaller than k + 10 = 13. In such cases the MANOVA procedures
are not recommended. Fortunately we already have strong univariate results.
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6.12 Logistic regression

Multiple regression is usually not appropriate when we regress a dichotomous (yes-no) variable on continuous
predictors. The assumptions of normally distributed error are typically violated. So we usually use logistic
regression instead. That is, we assume that the probability of a “yes” is certain function of a weighted sum of
the predictors, the inverse logit. In other words, if Y is the probability of a “yes” for a given set of predictor
values X1, X2, . . . , the model says that

log
Y

1− Y
= b0 + b1X1 + b2X2 + . . . + error

The function log Y
1−Y is the logit function. This is the “link function” in logistic regression. Other link

functions are possible in R. If we represent the right side of this equation as X, then the inverse function is

Y =
eX

1 + eX

In R, when using such transformations as this one, we use glm (the generalized linear model) instead of
lm. We specify the “family” of the model to get the right distribution. Here the family is called binomial.
Suppose the variable y has a value of 0 or 1 for each subject, and the predictors are x1, x2, and x3. We
can thus say

summary(glm(y ~ x1 + x2 + x3, family=binomial))

to get the basic analysis, including p values for each predictor. Psychologists often like to ask whether the
overall regression is significant before looking at the individual predictors. Unfortunately, R does not report
the overall significance as part of the summary command. To get a test of overall significance, you must
compare two models. One way to do this is:

glm1 <- glm(y ~ x1 + x2 + x3, family=binomial)
glm0 <- glm(y ~ 1, family=binomial)
anova(glm0,glm1,test="Chisq")

6.13 Log-linear models

Another use of glm is log-linear analysis, where the family is poisson rather than binomial. Suppose we
have a table called t1.data like the following (which you could generate with the help of expand.grid()).
Each row represents the levels of the variables of interest. The last column represents the number of subjects
with that combination of levels. The dependent measure is actually expens vs. notexpens. The classification
of subjects into these categories depended on whether the subject chose the expensive treatment or not. The
variable “cancer” has three values (cervic, colon, breast) corresponding to the three scenarios, so R makes
two dummy variables, “cancercervic” and “cancercolon”. The variable “cost” has the levels “expens” and
“notexp”. The variable “real” is ”real” vs. “hyp” (hypothetical).

cancer cost real count
colon notexp real 37
colon expens real 20
colon notexp hyp 31
colon expens hyp 15
cervic notexp real 27
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cervic expens real 28
cervic notexp hyp 52
cervic expens hyp 6
breast notexp real 22
breast expens real 32
breast notexp hyp 25
breast expens hyp 27

The following sequence of commands does one analysis:

t1 <- read.table("t1.data",header=T)
summary(glm(count ~ cancer + cost + real + cost*real,
family=poisson(), data=t1)

This analysis asks whether “cost” and “real” interact in determining “count,” that is, whether the response
is affected by “real.” See the chapter on Generalized Linear Models in Venables and Ripley (1999) for more
discussion of how this works.

6.14 Rasch models

R can be used to fit a Rasch model in Item Response Theory (IRT). The Rasch model was proposed in the
1960’s by a Danish statistician Georg Rasch. The basic Rasch model is used to separate the ability of test
takers and the quality of the test. In this section we will be going over how R can be used to estimate IRT
models.

Take the following table as an example. The table shows the results of 35 students taking an 18-item
ability test. Each item is coded as correct (1) or incorrect (0). The data come from the first example
of a popular free software called MiniStep. MiniStep is the evaluation version of a larger, more complete
software called WinStep. Ministep can be downloaded from http://www.winstep.org. It works only under
the Windows environment.

At the bottom of the table is a row showing the percentages of students who answer each question
correctly. Questions 1, 2, and 3 are the easiest because all students get it right. Question 18 is the hardest
because none of the students knows the answer to it. Questions like these are not useful in distinguishing
students who possess high ability and students who possess low ability. Questions like these are therefore
omitted from the calculation.

name q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18
Richard 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
Tracie 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
Walter 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0
Blaise 1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0

Ron 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
William 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Susan 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0
Linda 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Kim 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
Carol 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
Pete 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Brenda 1 1 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0
Mike 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0
Zula 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
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Frank 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
Dorothy 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0

Rod 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0
Britton 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0

Janet 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
David 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0

Thomas 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0
Betty 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
Bert 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0
Rick 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0
Don 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Barbara 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
Adam 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Audrey 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0
Anne 1 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0
Lisa 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

James 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
Joe 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

Martha 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
Elsie 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0
Helen 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

----------------------------------------------------------------------------
1 1 1 .91 .88 .86 .88 .77 .86 .69 .34 .17 .20 .09 .03 .03 .03 0.0

We also need to examine if there are students who get all or none of the items right. If we omit items 1,
2, 3, and 18, and we take a look at the the 0’s and 1’s for each student, then we see that Helen fails on all
remaining items. Helen therefore tells us nothing about which item is harder and which is easier. All items
are beyond Helen’s ability. Students who can get all items right also do not give us useful information. But
in this example none of the students can answer all items correctly.

This is how many specific-purpose statistical packages prepare the raw data for IRT analysis. These
packages set aside any items or persons that provide no useful information for the analysis. They analyze
the IRT model with the remaining data. From the solutions derived from the remaining data, these packages
extrapolate to come up with estimates for items and persons first set aside.

In R we can use a conditional logit model to perform IRT analyses. The conditinal logit model is in
the survival analysis library maintained by Thomas Lumley at University of Washington. A description of
the survival analysis library and the additional packages it depends on can be obtained by the R command
library(help=survival). The R codes offered in this section have been tested with version 2.11-4 of the
survival library in R-1.9.0.

The original derivation by Rasch was different but equivalent to a fixed-effect conditional logit model.
Note that the following procedures in R are suitable only for binary items (e.g., pass/fail on test items).

The Rasch model states that the log odds of a person s answering an item i correctly is a function of
the person’s ability (θs) and the item’s difficulty (βi). Difficult items are hard to get right even for people
with high ability. The odds of getting an item right decreases with item difficulty (and thus the minus sign
before βi). The notations we use here are from Embretson and Reise (2000).

logit(pi,s) = log(
Pr(pi,s)

Pr(1− pi,s)
) = θs − βi,

where
s = 1, . . . , number of persons; i = 1, . . . , number of items; and θs ≈ Normal(0, τ).
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The example data, after removing Helen and items 1, 2, 3, and 18, contain 34 students (s = 1, 2, . . . 34)
and 17 items (i = i, 2, . . . 17). Richard is person 1, Tracie is person 2, ..., and so on. To evaluate Richard’s
chance of answering item 3 correctly, we take Richard’s abiliy (say, it is 3 in logit unit), substract it out with
item 3’s difficulty (say, it is 2.2 in logit unit), and we get a 0.8 logit. We can convert the logit scale back
to probability by taking exp(0.8)/(1 + exp(0.8)) and we get 0.69. Richard has a 69% chance of getting
item 3 right.

The question is, how do we calculate the θ’s and the β’s in the equation?

We need to first load the survival analysis library by typing library(survival). Then we need to set
aside uninformative items and persons. This is done by the following commands:

> library(survival)
> exam1 <- read.csv(file="exam1.dat", sep="", header=T, row.names=NULL)
> exam1$id <- factor(paste("s", 1:dim(exam1)[1], sep=""))
> #
> # percentage of Ss who can correctly answer the items
> #
> round(apply(exam1[, 3:20], 2, mean), 2) # items 1, 2, 3 and 18 are no good

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16
1.00 1.00 1.00 0.91 0.89 0.86 0.89 0.77 0.86 0.69 0.34 0.17 0.20 0.09 0.03 0.03
q17 q18

0.03 0.00
> round(apply(exam1[, 7:19], 1, mean), 2) # Helen got every good item wrong

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.23 0.46 0.46 0.15 0.46 0.46 0.77 0.46 0.46 0.54 0.38 0.31 0.46 0.54 0.69 0.46

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0.38 0.54 0.38 0.54 0.62 0.62 0.62 0.77 0.15 0.46 0.23 0.46 0.46 0.38 0.46 0.54

33 34 35
0.15 0.62 0.00
> exam1[35, ]

name sex q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 id
35 Helen F 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s35
> # remove items 1, 2, 3, and 18 because they provide no useful information
> names(exam1)
[1] "name" "sex" "q1" "q2" "q3" "q4" "q5" "q6" "q7" "q8"

[11] "q9" "q10" "q11" "q12" "q13" "q14" "q15" "q16" "q17" "q18"
[21] "id"
> exam1.1 <- exam1[, -c(3,4,5,20)]
> # remove Helen, who answered all good items incorrectly
> exam1.1 <- exam1[ -dim(exam1)[1], ]

To run the conditional logit model clog(), we need to reshape the data from a wide format to a long
format. The reshape() command takes q4:q17 and organize them into a new variable called resp. Another
new varible item is created to identify questions 4 to 17.

> exam1.1 <- reshape(exam1.1, varying=list(paste("q", 4:17, sep="")),
+ timevar="item", v.names="resp", direction="long")

In the equation the item difficulty parameters (the β’s) have a minus sign before them. In clog() a
parameter with a minus sign is represented by a dummy variable of -1. For example, in the long form the
items are identified by the variable item. An excerpt of the full data shows that Martha answered item 1
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correctly, Elsie also answered item 1 correctly. The answers of Martha and Elsie for item 1 are followed by
answers of Richard, Tracie, and Walter to the next item (item 2).

> exam1.1[34:38, ]
name sex id item resp

s33.1 Martha F s33 1 1
s34.1 Elsie F s34 1 1
s1.2 Richard M s1 2 1
s2.2 Tracie F s2 2 1
s3.2 Walter M s3 2 1

Using the above data excerpt as an example, we can create dummy variables for items 1 and 2. The
R command is tt <- factor(exam1.1[34:38, "item"]); dummy <- diag(nlevels(tt))[tt, ] and you
have:

> cbind(exam1.1[34:38, ], 0 - dummy)
name sex id item resp 1 2

s34.1 Elsie F s34 1 1 -1 0
s35.1 Helen F s35 1 1 -1 0
s1.2 Richard M s1 2 1 0 -1
s2.2 Tracie F s2 2 1 0 -1
s3.2 Walter M s3 2 1 0 -1

Note that the last two columns are added with cbind() and they can be used to code the β parameters
for items 1 and 2, respectively. When this is applied to the 476 rows in the data set, it produces a dummy
variable matrix of 476 rows and 14 columns. Each column of the matrix will be used to estimate the item
difficulty associated with each of questions 4 to 17.

> ex.i.dummy <- diag(nlevels(factor(exam1.1$item)))[factor(exam1.1$item), ]
> ex.i.dummy <- 0 - ex.i.dummy # turns (0, 1) into (0, -1)
> ex.i.dummy <- data.frame(ex.i.dummy, row.names=NULL)
> dimnames(ex.i.dummy)[[2]] <- paste("i", 4:17, sep="")
> dim(ex.i.dummy)
[1] 476 14

Finally, a call to clogit() completes the calculations. Worth noting is how the syntax is written. The
strata() function tells clogit() to estimate item difficulty associated with each dummy variable by holding
constant the influence across different persons. The syntax also specifies that the item difficulty paramaters
be estimated for all items except i4. This is because i4 is the reference level when all dummy variables are
zero. The clogit() function is not able to define a reference level if i4 is added. The clogit() function
with i4 does not know what to do when all dummy variables are zero.

> attach(ex.i.dummy) # attach the dummy variables so I can call i4:i17
> # item 4 is the reference
> exam2.clog<- clogit(resp ~ i5+i6+i7+i8+i9+i10+i11+i12+i13+i14+
+ i15+i16+i17+ strata(id), data=exam1.1)
> summary(exam2.clog)
Call:
clogit(resp ~ i5 + i6 + i7 + i8 + i9 + i10 + i11 + i12 + i13 +

i14 + i15 + i16 + i17 + strata(id), data = exam1.1)
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n= 476

coef exp(coef) se(coef) z p
i5 0.514 1.67 1.025 0.501 6.2e-01
i6 0.923 2.52 0.991 0.931 3.5e-01
i7 0.514 1.67 1.025 0.501 6.2e-01
i8 1.875 6.52 0.955 1.964 5.0e-02
i9 0.923 2.52 0.991 0.931 3.5e-01
i10 2.598 13.44 0.944 2.752 5.9e-03
i11 4.517 91.54 0.954 4.736 2.2e-06
i12 5.792 327.53 1.028 5.632 1.8e-08
i13 5.537 253.95 1.010 5.484 4.1e-08
i14 6.825 920.74 1.136 6.007 1.9e-09
i15 8.095 3278.95 1.403 5.772 7.8e-09
i16 8.095 3278.95 1.403 5.772 7.8e-09
i17 8.095 3278.95 1.403 5.772 7.8e-09

exp(coef) exp(-coef) lower .95 upper .95
i5 1.67 0.597954 0.224 12.5
i6 2.52 0.397477 0.361 17.6
i7 1.67 0.597954 0.224 12.5
i8 6.52 0.153373 1.004 42.4
i9 2.52 0.397477 0.361 17.6
i10 13.44 0.074425 2.112 85.5
i11 91.54 0.010924 14.120 593.5
i12 327.53 0.003053 43.650 2457.7
i13 253.95 0.003938 35.104 1837.0
i14 920.74 0.001086 99.293 8538.0
i15 3278.95 0.000305 209.826 51240.2
i16 3278.95 0.000305 209.826 51240.2
i17 3278.95 0.000305 209.826 51240.2

Rsquare= 0.525 (max possible= 0.659 )
Likelihood ratio test= 355 on 13 df, p=0
Wald test = 108 on 13 df, p=0
Score (logrank) test = 277 on 13 df, p=0

With the i4 being the reference level, the coeffiencts associated with the dummy variables should be
interpreted as the differences in item difficulty between i4 and each of i5 to i17. For example, the 0.514
associated with i5 means that i5 is more difficult (remember, higher β means higher difficulty) than i4 by
0.514. In addition, items 15, 16, and 17 are equally difficult. They are more difficult than i4 by 8.095 logits.
This translates to a reduction in the probability of answering items 15, 16, and 17 correctly. On a probability
scale, this 8.095 logit is equivalent to 0.999 reduction in probability (try exp(8.095) / ( 1 + exp(8.095))).

The clogit() function in R is general-purpose routine designed for fitting a conditional logit model.
Thus it does not automatically print out many other statistics specific to Rasch model. For example, the
summary() function does not automatically generate the estimated ability level for each person. Other
packages like MiniStep does that for you. But clogit() in R provides estimates of item difficulty, which are
the most important information for developing surveys or tests.
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6.15 Conjoint analysis

In true conjoint analysis, we present a subject with stimuli made by crossing at least two different variables.
For example, in one study, Baron and Andrea Gurmankin presented each subject with 56 items in a random
order. The items consisted of each of each of eight medical conditions (ranging from a wart to immediate
death) at each of seven probability levels, and the subjects provided a badness rating for each of the 56
items. The assumption of conjoint analysis is that the subject behaves as if he represents the disutility of
each condition as a number, and the probability as another number, adds the two numbers, and transforms
the result monotonically into the response scale provided. The representation of probability is a monotonic
function of the given probability.

When we analyze the data, we try to recover the three transformations so as to get the best fit assuming
that this model is true. The three transformations are the assignment of numbers to the probabilities, the
assignment of numbers to the conditions, and the function relating the result to the response scale. (In this
case, if the subject followed expected-utility theory, the probability would be transformed logarithmically,
so that the additive representation corresponded to multiplication.)

R does not have a conjoint analysis package as such. But the Acepack package contains a function
called ace(), for “alternating conditional expectations,” which does essentially what we want. It maximizes
the variance in the dependent variable (the response) that is explained by the predictors (probability and
condition), by using an iterative process. Here is an example in which the response is called bad, which is
a matrix in which the rows are subjects, and within each row the probabilities are in groups of 8, with the
conditions repeated in each group.

probs <- rep(1:7,rep(8,7))
conds <- gl(8,1,56)
cnames <- c("wart","toe","deaf1","leg1","leg2","blind","bbdd","death")
pnames <- c(".001",".0032",".01",".032",".1",".32","1")

c.wt.ace <- matrix(0,ns,8) # resulting numbers for conditions
p.wt.ace <- matrix(0,ns,7) # resulting transformed probabilities
bad.ace <- matrix(0,ns,56) # transformed responses

for (i in 1:ns) # fit the model for each subject
{av1 <- ace(cbind(probs,conds),bad[i,],lin=1)
bad.ace[i,] <- av1$ty
p.wt.ace[i,] <- av1$tx[8*0:6+1,1]
c.wt.ace[i,] <- av1$tx[1:8,2]

}

In the end, the matrices p.wt.ace, c.wt.ace and bad.ace should have the transformed numbers, one
row per subject.

6.16 Imputation of missing data

Schafer and Graham (2002) provide a good review of methods for dealing with missing data. R provides
many of the methods that they discuss. One method is multiple imputation, which is found in the Hmisc
package. Each missing datum is inferred repeated from different samples of other variables, and the repeated
inferences are used to determine the error. It turns out that this method works best with the ols() function
from the Design package rather than with (the otherwise equivalent) lm() function. Here is an example,
using the data set t1.
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library(Hmisc)
f <- aregImpute(~v1+v2+v3+v4, n.impute=20,

fweighted=.2, defaultLinear=T, data=t1)
library(Design)
fmp <- fit.mult.impute(v1~v2+v3, ols, f, data=t1)
summary(fmp)

The first command (f) imputes missing values in all four variables, using the other three for each variable.
The second command (fmp) estimates a regression model in which v1 is predicted from two of the remaining
variables. A variable can be used (and should be used, if it is useful) for imputation even when it is not used
in the model.
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